Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.128
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7903): 900-906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296858

RESUMO

Infections of the central nervous system are among the most serious infections1,2, but the mechanisms by which pathogens access the brain remain poorly understood. The model microorganism Listeria monocytogenes (Lm) is a major foodborne pathogen that causes neurolisteriosis, one of the deadliest infections of the central nervous system3,4. Although immunosuppression is a well-established host risk factor for neurolisteriosis3,5, little is known about the bacterial factors that underlie the neuroinvasion of Lm. Here we develop a clinically relevant experimental model of neurolisteriosis, using hypervirulent neuroinvasive strains6 inoculated in a humanized mouse model of infection7, and we show that the bacterial surface protein InlB protects infected monocytes from Fas-mediated cell death by CD8+ T cells in a manner that depends on c-Met, PI3 kinase and FLIP. This blockade of specific anti-Lm cellular immune killing lengthens the lifespan of infected monocytes, and thereby favours the transfer of Lm from infected monocytes to the brain. The intracellular niche that is created by InlB-mediated cell-autonomous immune resistance also promotes Lm faecal shedding, which accounts for the selection of InlB as a core virulence gene of Lm. We have uncovered a specific mechanism by which a bacterial pathogen confers an increased lifespan to the cells it infects by rendering them resistant to cell-mediated immunity. This promotes the persistence of Lm within the host, its dissemination to the central nervous system and its transmission.


Assuntos
Doenças do Sistema Nervoso Central , Listeria monocytogenes , Listeriose , Animais , Proteínas de Bactérias/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Doenças do Sistema Nervoso Central/microbiologia , Modelos Animais de Doenças , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Camundongos , Monócitos , Virulência
2.
PLoS Pathog ; 20(6): e1012319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885290

RESUMO

Candida albicans is a leading cause of intravascular catheter-related infections. The capacity for biofilm formation has been proposed to contribute to the persistence of this fungal pathogen on catheter surfaces. While efforts have been devoted to identifying microbial factors that modulate C. albicans biofilm formation in vitro, our understanding of the host factors that may shape C. albicans persistence in intravascular catheters is lacking. Here, we used multiphoton microscopy to characterize biofilms in intravascular catheters removed from candidiasis patients. We demonstrated that, NETosis, a type of neutrophil cell death with antimicrobial activity, was implicated in the interaction of immune cells with C. albicans in the catheters. The catheter isolates exhibited reduced filamentation and candidalysin gene expression, specifically in the total parenteral nutrition culture environment. Furthermore, we showed that the ablation of candidalysin expression in C. albicans reduced NETosis and conferred resistance to neutrophil-mediated fungal biofilm elimination. Our findings illustrate the role of neutrophil NETosis in modulating C. albicans biofilm persistence in an intravascular catheter, highlighting that C. albicans can benefit from reduced virulence expression to promote its persistence in an intravascular catheter.


Assuntos
Biofilmes , Candida albicans , Candidíase , Infecções Relacionadas a Cateter , Armadilhas Extracelulares , Proteínas Fúngicas , Neutrófilos , Humanos , Biofilmes/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Candidíase/microbiologia , Candidíase/imunologia , Infecções Relacionadas a Cateter/microbiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Armadilhas Extracelulares/imunologia , Catéteres/microbiologia , Regulação Fúngica da Expressão Gênica
3.
Plant J ; 118(3): 802-822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305492

RESUMO

Floral patterns are unique to rice and contribute significantly to its reproductive success. SL1 encodes a C2H2 transcription factor that plays a critical role in flower development in rice, but the molecular mechanism regulated by it remains poorly understood. Here, we describe interactions of the SL1 with floral homeotic genes, SPW1, and DL in specifying floral organ identities and floral meristem fate. First, the sl1 spw1 double mutant exhibited a stamen-to-pistil transition similar to that of sl1, spw1, suggesting that SL1 and SPW1 may located in the same pathway regulating stamen development. Expression analysis revealed that SL1 is located upstream of SPW1 to maintain its high level of expression and that SPW1, in turn, activates the B-class genes OsMADS2 and OsMADS4 to suppress DL expression indirectly. Secondly, sl1 dl displayed a severe loss of floral meristem determinacy and produced amorphous tissues in the third/fourth whorl. Expression analysis revealed that the meristem identity gene OSH1 was ectopically expressed in sl1 dl in the fourth whorl, suggesting that SL1 and DL synergistically terminate the floral meristem fate. Another meristem identity gene, FON1, was significantly decreased in expression in sl1 background mutants, suggesting that SL1 may directly activate its expression to regulate floral meristem fate. Finally, molecular evidence supported the direct genomic binding of SL1 to SPW1 and FON1 and the subsequent activation of their expression. In conclusion, we present a model to illustrate the roles of SL1, SPW1, and DL in floral organ specification and regulation of floral meristem fate in rice.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Meristema , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Mutação
4.
Ann Neurol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934512

RESUMO

OBJECTIVE: Although metabolic abnormalities are implicated in the etiology of neurodegenerative diseases, their role in the development of amyotrophic lateral sclerosis (ALS) remains a subject of controversy. We aimed to identify the association between metabolic syndrome (MetS) and the risk of ALS. METHODS: This study included 395,987 participants from the UK Biobank to investigate the relationship between MetS and ALS. Cox regression model was used to estimate hazard ratios (HR). Stratified analyses were performed based on gender, body mass index (BMI), smoking status, and education level. Mediation analysis was conducted to explore potential mechanisms. RESULTS: In this study, a total of 539 cases of ALS were recorded after a median follow-up of 13.7 years. Patients with MetS (defined harmonized) had a higher risk of developing ALS after adjusting for confounding factors (HR: 1.50, 95% CI: 1.19-1.89). Specifically, hypertension and high triglycerides were linked to a higher risk of ALS (HR: 1.53, 95% CI: 1.19-1.95; HR: 1.31, 95% CI: 1.06-1.61, respectively). Moreover, the quantity of metabolic abnormalities showed significant results. Stratified analysis revealed that these associations are particularly significant in individuals with a BMI <25. These findings remained stable after sensitivity analysis. Notably, mediation analysis identified potential metabolites and metabolomic mediators, including alkaline phosphatase, cystatin C, γ-glutamyl transferase, saturated fatty acids to total fatty acids percentage, and omega-6 fatty acids to omega-3 fatty acids ratio. INTERPRETATION: MetS exhibits a robust association with an increased susceptibility to ALS, particularly in individuals with a lower BMI. Furthermore, metabolites and metabolomics, as potential mediators, provide invaluable insights into the intricate biological mechanisms. ANN NEUROL 2024.

5.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37948670

RESUMO

OBJECTIVE: To compare the effects of peritoneal dialysis and hemodialysis on spontaneous brain activity in patients with end-stage renal disease. METHODS: A total of 52 dialysis patients with end-stage renal disease, including 25 patients with chronic kidney disease undergoing hemodialysis (HD-CKD) and 27 patients with chronic kidney disease undergoing peritoneal dialysis (PD-CKD), and 49 healthy controls (normal control) were included. All participants underwent neuropsychological testing (Mini-Mental State Examination and Montreal cognitive assessment) and resting-state functional magnetic resonance imaging. Fractional amplitude of low frequency fluctuations and Regional Homogeneity algorithms were employed to evaluate spontaneous brain activity. Statistical analysis was performed to discern differences between the groups. RESULTS: When compared with the normal control group, the PD-CKD group exhibited significant alterations in fractional amplitude of low frequency fluctuations in various cerebellum regions and other brain areas, while the HD-CKD group showed decreased fractional amplitude of low frequency fluctuations in the bilateral pericalcarine cortex. The Regional Homogeneity values in the PD-CKD group were notably different than those in the normal control group, particularly in regions such as the bilateral caudate nucleus and the right putamen. CONCLUSION: Both peritoneal dialysis and hemodialysis modalities impact brain activity, but manifest differently in end-stage renal disease patients. Understanding these differences is crucial for optimizing patient care.


Assuntos
Falência Renal Crônica , Diálise Peritoneal , Insuficiência Renal Crônica , Humanos , Imageamento por Ressonância Magnética/métodos , Diálise Renal , Encéfalo , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/patologia , Falência Renal Crônica/terapia , Falência Renal Crônica/patologia
6.
Proc Natl Acad Sci U S A ; 119(40): e2123231119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161910

RESUMO

ß-Arrestin 1 (ARRB1) has been recognized as a multifunctional adaptor protein in the last decade, beyond its original role in desensitizing G protein-coupled receptor signaling. Here, we identify that ARRB1 plays essential roles in mediating gastric cancer (GC) cell metabolism and proliferation, by combining cohort analysis and functional investigation using patient-derived preclinical models. Overexpression of ARRB1 was associated with poor outcome of GC patients and knockdown of ARRB1 impaired cell proliferation both ex vivo and in vivo. Intriguingly, ARRB1 depicted diverse subcellular localizations during a passage of organoid cultures (7 d) to exert dual functions. Further analysis revealed that nuclear ARRB1 binds with transcription factor E2F1 triggering up-regulation of proliferative genes, while cytoplasmic ARRB1 modulates metabolic flux by binding with the pyruvate kinase M2 isoform (PKM2) and hindering PKM2 tetramerization, which reduces pyruvate kinase activity and leads to cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis. As ARRB1 localization was shown mostly in the cytoplasm in human GC samples, therapeutic potential of the ARRB1-PKM2 axis was tested, and we found tumor proliferation could be attenuated by the PKM2 activator DASA-58, especially in ARRB1high organoids. Together, the data in our study highlight a spatiotemporally dependent role of ARRB1 in mediating GC cell metabolism and proliferation and implies reactivating PKM2 may be a promising therapeutic strategy in a subset of GC patients.


Assuntos
Piruvato Quinase , Neoplasias Gástricas , beta-Arrestina 1 , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Fator de Transcrição E2F1/metabolismo , Glicólise/fisiologia , Humanos , Isoformas de Proteínas/genética , Piruvato Quinase/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
7.
Am J Physiol Cell Physiol ; 326(5): C1367-C1383, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406826

RESUMO

Age-related macular degeneration (AMD) is characterized by the degenerative senescence in the retinal pigment epithelium (RPE) and photoreceptors, which is accompanied by the accumulation of iron ions in the aging retina. However, current models of acute oxidative stress are still insufficient to simulate the gradual progression of AMD. To address this, we established chronic injury models by exposing the aRPE-19 cells, 661W cells, and mouse retina to iron ion overload over time. Investigations at the levels of cell biology and molecular biology were performed. It was demonstrated that long-term treatment of excessive iron ions induced senescence-like morphological changes, decreased cell proliferation, and impaired mitochondrial function, contributing to apoptosis. Activation of the mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were confirmed both in the aRPE-19 and 661W cells. Furthermore, iron ion overload resulted in dry AMD-like lesions and decreased visual function in the mouse retina. These findings suggest that chronic exposure to overloading iron ions plays a significant role in the pathogenesis of retinopathy and provide a potential model for future studies on AMD.NEW & NOTEWORTHY To explore the possibility of constructing reliable research carriers on age-related macular degeneration (AMD), iron ion overload was applied to establish models in vitro and in vivo. Subsequent investigations into cellular physiology and molecular biology confirmed the presence of senescence in these models. Through this study, we hope to provide a better option of feasible methods for future researches into AMD.


Assuntos
Modelos Animais de Doenças , Ferro , Degeneração Macular , Epitélio Pigmentado da Retina , Animais , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Camundongos , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Apoptose , Estresse Oxidativo , Linhagem Celular , Senescência Celular , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Proliferação de Células , Retina/metabolismo , Retina/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia
8.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751773

RESUMO

Pericytes reside in capillary beds where they share a basement membrane with endothelial cells and regulate their function. However, little is known about embryonic pericyte development, in part, due to lack of specific molecular markers and genetic tools. Here, we applied single cell RNA-sequencing (scRNA-seq) of platelet derived growth factor beta (pdgfrb)-positive cells to molecularly characterize pericytes in zebrafish larvae. scRNA-seq revealed zebrafish cells expressing mouse pericyte gene orthologs, and comparison with bulk RNA-seq from wild-type and pdgfrb mutant larvae further refined a pericyte gene set. Subsequent integration with mouse pericyte scRNA-seq profiles revealed a core set of conserved pericyte genes. Using transgenic reporter lines, we validated pericyte expression of two genes identified in our analysis: NDUFA4 mitochondrial complex associated like 2a (ndufa4l2a), and potassium voltage-gated channel, Isk-related family, member 4 (kcne4). Both reporter lines exhibited pericyte expression in multiple anatomical locations, and kcne4 was also detected in a subset of vascular smooth muscle cells. Thus, our integrated molecular analysis revealed a molecular profile for zebrafish pericytes and allowed us to develop new tools to observe these cells in vivo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mutação , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
J Virol ; 97(1): e0156622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533952

RESUMO

Ascoviruses are insect-specific viruses that are thought to utilize the cellular apoptotic processes of host larvae to produce numerous virion-containing vesicles. In this study, we monitored the in vivo infection processes of Heliothis virescens ascovirus 3h (HvAV-3h) to illustrate the regulated cell death (RCD) of host cells. Transmission electron microscopic observations did not reveal any morphological markers of apoptosis in the fat bodies or hemocytes of HvAV-3h-infected Helicoverpa armigera or Spodoptera exigua larvae. However, several hemocytes showed the morphological criteria for necrosis and/or pyroptosis. Further in vitro biochemical tests were performed to confirm the RCD type of host cells after infection with HvAV-3h. Different morphological characteristics were found between the early (prior to 24 hours post-infection, [hpi]) and later (48 to 120 hpi) stages in both HvAV-3h infected larval fat bodies and hemocytes. In the early stages, the virions could only be found in several adipohemocytes, and the fat bodies were cleaving their contained lipid inclusions into small lipid dots. In the later stage, both fat bodies and hemocytes were filled with numerous virions. According to the morphological characteristics of HvAV-3h infected larval fat bodies or hemocytes, the pathogenic characteristics and infection patterns of HvAV-3h in the host larvae were described, and the systematic pathogenic mode of ascovirus infection was refined in this study. This study details the complete infection process of ascoviruses, which provides insights into the relationship between a pathogenesis of an insect virus and the RCD of different host tissues at different stages of infection. IMPORTANCE Viruses and other pathogens can interrupt host cellular apoptosis to gain benefits, such as sufficient resources and a stable environment that enables them to complete their replication and assembly. It is unusual for viruses to code proteins with homology to caspases, which are commonly recognized as apoptosis regulators. Ascoviruses are insect viruses with special cytopathology, and they have been hypothesized to induce apoptosis in their host larvae via coding a caspase-like protein. This enables them to utilize the process of cellular apoptosis to facilitate vesicle formation and replication. However, our previous studies revealed different trends. The fat bodies and hemocytes of Heliothis virescens ascovirus 3h (HvAV-3h)-infected larvae did not show any morphological markers of apoptosis but did display necrosis and/or pyroptosis morphological characteristics. The pathogenic characteristics and infection patterns of HvAV-3h in the host larvae were described, which can help us understand the relationship between the pathogenesis of an insect virus and host RCD.


Assuntos
Ascoviridae , Mariposas , Morte Celular Regulada , Animais , Caspases , Larva/virologia , Lipídeos , Mariposas/virologia , Necrose , Spodoptera/virologia
10.
J Transl Med ; 22(1): 440, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720358

RESUMO

PURPOSE: To explore the impact of microRNA 146a (miR-146a) and the underlying mechanisms in profibrotic changes following glaucoma filtering surgery (GFS) in rats and stimulation by transforming growth factor (TGF)-ß1 in rat Tenon's capsule fibroblasts. METHODS: Cultured rat Tenon's capsule fibroblasts were treated with TGF-ß1 and analyzed with microarrays for mRNA profiling to validate miR-146a as the target. The Tenon's capsule fibroblasts were then respectively treated with lentivirus-mediated transfection of miR-146a mimic or inhibitor following TGF-ß1 stimulation in vitro, while GFS was performed in rat eyes with respective intraoperative administration of miR-146a, mitomycin C (MMC), or 5-fluorouracil (5-FU) in vivo. Profibrotic genes expression levels (fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin) were determined through qPCR, Western blotting, immunofluorescence staining and/or histochemical analysis in vitro and in vivo. SMAD4 targeting siRNA was further used to treat the fibroblasts in combination with miR-146a intervention to confirm its role in underlying mechanisms. RESULTS: Upregulation of miR-146a reduced the proliferation rate and profibrotic changes of rat Tenon's capsule fibroblasts induced by TGF-ß1 in vitro, and mitigated subconjunctival fibrosis to extend filtering blebs survival after GFS in vivo, where miR-146a decreased expression levels of NF-KB-SMAD4-related genes, such as fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin(α-SMA). Additionally, SMAD4 is a key target gene in the process of miR-146a inhibiting fibrosis. CONCLUSIONS: MiR-146a effectively reduced TGF-ß1-induced fibrosis in rat Tenon's capsule fibroblasts in vitro and in vivo, potentially through the NF-KB-SMAD4 signaling pathway. MiR-146a shows promise as a novel therapeutic target for preventing fibrosis and improving the success rate of GFS.


Assuntos
Fibroblastos , Fibrose , Cirurgia Filtrante , Glaucoma , MicroRNAs , Ratos Sprague-Dawley , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Glaucoma/patologia , Glaucoma/genética , Cirurgia Filtrante/efeitos adversos , Fibroblastos/metabolismo , Masculino , Cápsula de Tenon/metabolismo , Cápsula de Tenon/patologia , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Ratos , Proteína Smad4/metabolismo , Proteína Smad4/genética , NF-kappa B/metabolismo , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Regulação da Expressão Gênica
11.
Hum Genomics ; 17(1): 101, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964352

RESUMO

BACKGROUND: Comorbidities of coronavirus disease 2019 (COVID-19)/coronary heart disease (CHD) pose great threats to disease outcomes, yet little is known about their shared pathology. The study aimed to examine whether comorbidities of COVID-19/CHD involved shared genetic pathology, as well as to clarify the shared genetic variants predisposing risks common to COVID-19 severity and CHD risks. METHODS: By leveraging publicly available summary statistics, we assessed the genetically determined causality between COVID-19 and CHD with bidirectional Mendelian randomization. To further quantify the causality contributed by shared genetic variants, we interrogated their genetic correlation with the linkage disequilibrium score regression method. Bayesian colocalization analysis coupled with conditional/conjunctional false discovery rate analysis was applied to decipher the shared causal single nucleotide polymorphisms (SNPs). FINDINGS: Briefly, we observed that the incident CHD risks post COVID-19 infection were partially determined by shared genetic variants. The shared genetic variants contributed to the causality at a proportion of 0.18 (95% CI 0.18-0.19) to 0.23 (95% CI 0.23-0.24). The SNP (rs10490770) located near LZTFL1 suggested direct causality (SNPs → COVID-19 → CHD), and SNPs in ABO (rs579459, rs495828), ILRUN(rs2744961), and CACFD1(rs4962153, rs3094379) may simultaneously influence COVID-19 severity and CHD risks. INTERPRETATION: Five SNPs located near LZTFL1 (rs10490770), ABO (rs579459, rs495828), ILRUN (rs2744961), and CACFD1 (rs4962153, rs3094379) may simultaneously influence their risks. The current study suggested that there may be shared mechanisms predisposing to both COVID-19 severity and CHD risks. Genetic predisposition to COVID-19 is a causal risk factor for CHD, supporting that reducing the COVID-19 infection risk or alleviating COVID-19 severity among those with specific genotypes might reduce their subsequent CHD adverse outcomes. Meanwhile, the shared genetic variants identified may be of clinical implications for identifying the target population who are more vulnerable to adverse CHD outcomes post COVID-19 and may also advance treatments of 'Long COVID-19.'


Assuntos
COVID-19 , Doença das Coronárias , Humanos , Teorema de Bayes , Síndrome de COVID-19 Pós-Aguda , COVID-19/genética , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Loci Gênicos , Estudo de Associação Genômica Ampla
12.
FASEB J ; 37(6): e22945, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37144630

RESUMO

As a prototypical member of the IL-17 family, interleukin-17A (IL-17A) has received increasing attentions for its potent proinflammatory role as well as potential to be a key therapeutic target in human autoimmune inflammatory diseases; however, its roles in other pathological scenarios like neuroinflammations are not fully elucidated yet but appear essentially correlating and promising. Glaucoma is the leading cause of irreversible blindness with complicated pathogenesis still to be understood, where neuroinflammation was reported to be critically involved in its both initiation and progression. Whether IL-17A takes part in the pathogenesis of glaucoma through interfering neuroinflammation due to its potent proinflammatory effect is still unknown. In the present study, we investigated the role of IL-17A in the pathological process of glaucoma neuropathy as well as its relationship with the predominant immune inflammation mediator microglia in retina, trying to elucidate the underlying mechanisms from the view of inflammation modulation. In our study, RNA sequencing was performed for the retinas of chronic ocular hypertension (COH) and control mice. Western blot, RT-PCR, immunofluorescence, and ELISA were used to evaluate the microglial activation and proinflammatory cytokines release at conditioned levels of IL-17A, along with assessment of optic nerve integrity including retinal ganglion cells (RGCs) counting, axonal neurofilament quantification, and flash visual-evoked potential (F-VEP) examination. And the possibly involved signaling pathways were screened out to go through further validation in scenarios with conditioned IL-17A. Subsequently, IL-17A was found to be significantly upregulated in COH retina. Furthermore, suppression of IL-17A effectively diminished the loss of RGCs, improved axonal quality, and F-VEP performance in COH mice. Mechanistically, IL-17A promoted microglial activation and proinflammatory cytokines release along with enhanced phenotypic conversion of activated microglia to M2-type in early stage and to M1-type in late stage in glaucomatous retinas. Microglia elimination decreased the proinflammatory factors secretion, enhanced the RGCs survival and axonal quality mediated by IL-17A. Furthermore, IL-17A-induced the overactivation of microglia in glaucomatous condition was alleviated after blocking the p38 MAPK pathway. Taken together, IL-17A is involved in the regulation of retinal immune response and RGCs cell death in experimental glaucoma by essentially promoting retinal microglial activation via p38 MAPK signaling pathway. IL-17A dynamically regulates the phenotypic conversion of retinal microglia in experimental glaucoma partly depending on the duration of elevated intraocular pressure. Suppression of IL-17A contributes to alleviate glaucoma neuropathy and exhibits promising potential as an innovative target for therapeutic strategy in glaucoma.


Assuntos
Glaucoma , Hipertensão Ocular , Camundongos , Humanos , Animais , Interleucina-17/metabolismo , Microglia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Doenças Neuroinflamatórias , Glaucoma/metabolismo , Retina/metabolismo , Hipertensão Ocular/etiologia , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças
13.
FASEB J ; 37(1): e22682, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468758

RESUMO

Traumatic optic neuropathy (TON) is a complication of craniocerebral, orbital and facial injuries, leading to irreversible vision loss. At present, there is no reliable, widely used animal model, although it has been confirmed that TON can cause the loss of retinal ganglion cells (RGC). However, the cascade reaction of retinal glial cells underlying TON is unclear. Therefore, the establishment of an animal model to explore the pathological mechanism of TON would be of great interest to the scientific community. In this study, we propose a novel mouse model utilizing a 3D stereotaxic apparatus combined with a 27G needle to evaluate damage to the optic nerve by micro-CT, anatomy, SD-OCT and F-VEP. Immunofluorescence, western blotting, qPCR experiments were conducted to investigate the loss of RGCs and activation or inactivation of microglia, astrocytes and Müller glial cells in the retina from the first week to the fourth week after modeling. The results showed that this minimally invasive method caused damage to the distal optic nerve and loss of RGC after optic nerve injury. Microglia cells were found to be activated from the first week to the third week; however, they were inactivated at the fourth week; astrocytes were activated at the second week of injury, while Müller glial cells were gradually inactivated following injury. In conclusion, this method can be used as a novel animal model of distal TON, that results in a series of cascade reactions of retinal glial cells, which will provide a basis for future studies aimed at exploring the mechanism of TON and the search for effective treatment methods.


Assuntos
Traumatismos do Nervo Óptico , Camundongos , Animais , Neuroglia , Células Ependimogliais , Astrócitos , Modelos Animais de Doenças
14.
Ann Hematol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805037

RESUMO

In this prospective, multicenter, Phase 2 clinical trial (NCT02987244), patients with peripheral T-cell lymphomas (PTCLs) who had responded to first-line chemotherapy with cyclophosphamide, doxorubicin or epirubicin, vincristine or vindesine, etoposide, and prednisone (Chi-CHOEP) were treated by autologous stem cell transplantation (ASCT) or with chidamide maintenance or observation. A total of 85 patients received one of the following interventions: ASCT (n = 15), chidamide maintenance (n = 44), and observation (n = 26). estimated 3 PFS and OS rates were 85.6%, 80.8%, and 49.4% (P = 0.001). The two-year OS rates were 85.6%, 80.8%, and 69.0% (P = 0.075).The ASCT and chidamide maintenance groups had significantly better progression-free survival (PFS) than the observation group (P = 0.001, and P = 0.01, respectively). The overall survival (OS) differed significantly between the chidamide maintenance group and the observation group ( P = 0.041). The multivariate and propensity score matching analyses for PFS revealed better outcomes in the subjects in the chidamide maintenance than observation groups (P = 0.02). The ASCT and chidamide maintenance groups had significant survival advantages over the observation group. In the post-remission stage of the untreated PTCL patients, single-agent chidamide maintenance demonstrated superior PFS and better OS than observation. Our findings highlight the potential benefit of chidamide in this patient subset, warranting further investigation through larger prospective trials. Clinical trial registration: clinicaltrial.gov, NCT02987244. Registered 8 December 2016, http://www.clinicaltrials.gov/ct2/show/NCT02987244 .

15.
J Org Chem ; 89(10): 7138-7147, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38695505

RESUMO

An economical one-pot, three-step reaction sequence of readily available 2-monosubstituted 1,3-diketones and 1,4-benzoquinones has been explored for the facile access of 2,3-dialkyl-5-hydroxybenzofurans. By using cheap K2CO3 and conc. HCl as the reaction promoters, the reaction occurs smoothly via sequential Michael addition, aromatization, retro-Claisen, deacylation, hemiketalization, and dehydration processes under mild conditions in a practical manner. Additionally, an interesting phenomenon was observed during the derivatization studies, where the dihydroquinoline was converted into tetrahydroquinoline and quinoline products, respectively, via a disproportionation process.

16.
Environ Res ; 245: 117958, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135100

RESUMO

Climate change affects human health and has been linked to several infectious diseases in recent year. However, there is limited assessment on the impact of heat waves and cold spells on pneumonia risk. This study aims to examine the association of heat waves and cold spells with daily pneumonia hospitalizations in 168 cities in China. Data on pneumonia hospitalizations between 2014 and 2017 were extracted from a national claim database of 280 million beneficiaries. We consider combining temperature intensity and duration to define heat waves and cold spells.This association was quantified using a quasi-Poisson generalized linear model combined with a distributed lag nonlinear model. Exposure-response curves and potential effect modifiers were also estimated. We found that the peak relative risk (RR) of cold spells on daily hospitalizations for pneumonia was observed in relatively mild cold spells with a threshold below the 3 days at the 2nd percentile (RR = 1.69, 95% CI: 1.46-1.92). The risk of heat waves increased with the thresholds, and the greatest risk was found for extremely heatwave period of 4 days at the 98th percentile (RR = 1.69, 95% CI: 1.46-1.92). Heat waves and cold spells are more likely to adversely affect women. In conclusion, our study provided novel and strong evidence that exposure to heat waves and cold spells was associate with increased hospital visits for pneumonia, especially in females. This is the first national study in China to comprehensively evaluate the influence of heat waves and cold spells on pneumonia risk, and the findings may offer valuable insights into the impact of climate change on public health.


Assuntos
Temperatura Alta , Pneumonia , Humanos , Feminino , Temperatura Baixa , Temperatura , Risco , China/epidemiologia , Pneumonia/epidemiologia
17.
J Thromb Thrombolysis ; 57(1): 132-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37723376

RESUMO

There is limited and inconsistent evidence for the association of statin therapy and statin treatment patterns with the risk of recurrent intracerebral hemorrhage (ICH) in patients with prior ICH. To assess the association of statin therapy and its intensity, type, initiation time, and discontinuation with the risk of recurrent ICH and mortality in Chinese patients with ICH. Patients with newly diagnosed ICH in the Beijing Employee Medical Claims Data database from 2010 to 2017 were included. Post-ICH statin users (post-diagnosis only) and nonusers (never), statin discontinuers (pre-diagnosis only) and continuers (pre- and post-diagnosis) were matched on a 1:1 propensity score, respectively. Adjusted Cox proportional risk models were used to estimate the risk ratios for ICH readmission and mortality under various statin patterns. A total of 2668 post-ICH statin users and 2668 nonusers without a history of statin use were enrolled. Post-ICH statin users had a lower risk of ICH readmission (HR, 0.57; 95% CI 0.48, 0.69) and all-cause death (0.56: 0.49, 0.63) than nonusers. Low/moderate-intensity treatment was associated with a 63% lower risk of recurrent ICH compared with nonusers (0.37: 0.29, 0.46), whereas high-intensity treatment did not reduce the risk (0.93: 0.74, 1.16). Both low/moderate-intensity (0.42: 0.36, 0.48) and high-intensity statins (0.57: 0.48, 0.69) were associated with a lower risk of all-cause mortality. The risk of ICH readmission was 53% (0.47: 0.30, 0.74) lower with adherence to rosuvastatin than with atorvastatin. Only starting medication within 30 days of the first diagnosis of ICH reduced the risk of ICH readmission (0.49: 0.40, 0.60). Among patients with a history of statin use, 1807 discontinuing and 1,807 continuing users of statins were included. The risk of ICH readmission (4.00: 3.32, 4.80) and the risk of all-cause death (4.01: 3.57, 4.50) were substantially increased in statin discontinuation compared with continued statin use. Statin therapy after ICH was associated with lower risks for ICH readmission and all-cause mortality compared with non-statin therapy, especially at low/moderate intensity and early initiation of statins after ICH. Adherence to rosuvastatin was associated with a lower risk of recurrence of ICH than atorvastatin. Among patients with a statin history prior to ICH, discontinuation of statins after ICH was associated with increased risk of ICH recurrence and death.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/uso terapêutico , Rosuvastatina Cálcica/uso terapêutico , Readmissão do Paciente , Hemorragia Cerebral/etiologia , Estudos Retrospectivos
18.
Mol Cell Proteomics ; 21(1): 100181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871808

RESUMO

Patient-derived organoids recently emerged as promising ex vivo 3D culture models recapitulating histological and molecular characteristics of original tissues, thus proteomic profiling of organoids could be valuable for function investigation and clinical translation. However, organoids are usually cultured in murine Matrigel (served as scaffolds and matrix), which brings an issue to separate organoids from Matrigel. Because of the complex compositions of Matrigel and thousands of identical peptides shared between Matrigel and organoids, insufficiently dissolved Matrigel could influence proteomic analysis of organoids in multiple ways. Thus, how to dissolve Matrigel matrix and recovery organoid cells efficiently is vital for sample preparation. Here, we comprehensively compared three popular Matrigel dissolving methods (cell recovery solution, dispase, and PBS-EDTA buffer) and investigated the effect of undissolved Matrigel proteins on proteomic profiles of organoids. By integrative analysis of label-free proteomes of Matrigel and stable isotope labeling by amino acids in cell culture proteomes of organoids collected by three methods, respectively, we found that dispase showed an optimal efficiency, with the highest peptide yield and the highest incorporation ratio of stable isotope labeling by amino acids in cell culture labels (97.1%), as well as with the least potential Matrigel contaminants. To help analysis of proteomic profiles of organoids collected by the other two methods, we identified 312 high-confidence Matrigel contaminants, which could be filtered out to attenuate Matrigel interference with minimal loss of biological information. Together, our study identifies bioinformatics and experimental approaches to eliminate interference of Matrigel contaminants efficiently, which will be valuable for basic and translational proteomic research using organoid models.


Assuntos
Organoides , Proteômica , Animais , Colágeno , Combinação de Medicamentos , Humanos , Laminina/metabolismo , Camundongos , Organoides/metabolismo , Proteoglicanas/metabolismo , Proteômica/métodos
19.
Nucleic Acids Res ; 50(D1): D150-D160, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718746

RESUMO

Noncanonical nucleic acid structures, such as G-quadruplex (G4) and i-Motif (iM), have attracted increasing research interests because of their unique structural and binding properties, as well as their important biological activities. To date, thousands of small molecules that bind to varying G4/iM structures have been designed, synthesized and tested for diverse chemical and biological uses. Because of the huge potential and increasing research interests on G4-targeting ligands, we launched the first G4 ligand database G4LDB in 2013. Here, we report a new version, termed G4LDB 2.2 (http://www.g4ldb.com), with upgrades in both content and function. Currently, G4LDB2.2 contains >3200 G4/iM ligands, ∼28 500 activity entries and 79 G4-ligand docking models. In addition to G4 ligand library, we have also added a brand new iM ligand library to G4LDB 2.2, providing a comprehensive view of quadruplex nucleic acids. To further enhance user experience, we have also redesigned the user interface and optimized the database structure and retrieval mechanism. With these improvements, we anticipate that G4LDB 2.2 will serve as a comprehensive resource and useful research toolkit for researchers across wide scientific communities and accelerate discovering and validating better binders and drug candidates.


Assuntos
Bases de Dados Genéticas , Quadruplex G , Relação Estrutura-Atividade , Sítios de Ligação/genética , Humanos , Ligantes , Simulação de Acoplamento Molecular
20.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 414-426, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38429975

RESUMO

Diabetic nephropathy (DN) is a severe complication of diabetes and the leading cause of end-stage renal disease and death. Germacrone (Ger) possesses anti-inflammatory, antioxidant and anti-DN properties. However, it is unclear whether the improvement in kidney damage caused by Ger in DN mice is related to abnormal compositions and metabolites of the gut microbiota. This study generates a mouse model of DN to explore the potent therapeutic ability and mechanism of Ger in renal function by 16S rRNA sequencing and untargeted fecal metabolomics. Although there is no significant change in microbiota diversity, the structure of the gut microbiota in the DN group is quite different. Serratia_marcescens and Lactobacillus_iners are elevated in the model group but significantly decreased after Ger intervention ( P<0.05). Under the treatment of Ger, no significant differences in the diversity and richness of the gut microbiota are observed. An imbalance in the intestinal flora leads to the dysregulation of metabolites, and non-targeted metabolomics data indicate high expression of stearic acid in the DN group, and oleic acid could serve as a potential marker of the therapeutic role of Ger in the DN model. Overall, Ger improves kidney injury in diabetic mice, in part potentially by reducing the abundance of Serratia_marcescens and Lactobacillus_iners, as well as regulating the associated increase in metabolites such as oleic acid, lithocholic acid and the decrease in stearic acid. Our research expands the understanding of the relationship between the gut microbiota and metabolites in Ger-treated DN. This contributes to the usage of natural products as a therapeutic approach for the treatment of DN via microbiota regulation.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Lactobacillus , Animais , Camundongos , Nefropatias Diabéticas/genética , RNA Ribossômico 16S/genética , Diabetes Mellitus Experimental/genética , Sesquiterpenos de Germacrano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA