Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 8(4): 4398-4409, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743038

RESUMO

Nanodiamonds (NDs) are emerging with great potential in biomedical applications like biomarking through fluorescence and magnetic resonance imaging (MRI), targeted drug delivery, and cancer therapy. The magnetic and optical properties of NDs could be tuned by selective doping. Therefore, we report multifunctional manganese-incorporated NDs (Mn-NDs) fabricated by Mn ion implantation. The fluorescent properties of Mn-NDs were tuned by inducing the defects by ion implantation and enhancing the residual nitrogen vacancy density achieved by a two-step annealing process. The cytotoxicity of Mn-NDs was investigated using NCTC clone 929 cells, and the results revealed no cytotoxicity effect. Mn-NDs have demonstrated dual mode contrast enhancement for both T 1- and T 2-weighted in vitro MR imaging. Furthermore, Mn-NDs have illustrated a significant increase in longitudinal relaxivity (fivefold) and transversal relaxivity (17-fold) compared to the as-received NDs. Mn-NDs are employed to investigate their ability for in vivo MR imaging by intraperitoneal (ip) injection of Mn-NDs into mice with liver tumors. After 2.5 h of ip injection, the enhancement of contrast in T 1- and T 2-weighted images has been observed via the accumulation of Mn-NDs in liver tumors of mice. Therefore, Mn-NDs have great potential for in vivo imaging by MR imaging in cancer therapy.

2.
Sci Rep ; 9(1): 1297, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718680

RESUMO

We demonstrate fluorescent Fe embedded magnetic nanodiamonds by ion implantation and two-step annealing. The diamond characteristics with a highly ordered core and a graphite surface layer are maintained after the implantation process. After the two-step annealing process, a bright red fluorescence associated with nitrogen-vacancy centers is observed. These new fluorescent magnetic nanodiamonds can be used as a dual-function in vivo tracer with both optical visibility and magnetic resonance imaging capabilities. They are potentially useful for the more advanced in vivo biological and medical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA