Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Dement Geriatr Cogn Disord ; 50(4): 387-393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34537768

RESUMO

INTRODUCTION: Mild cognitive impairment (MCI) is a dynamic state, which has evolved into a highly defined condition due to its association with dementia syndromes. There are no published data on the demographic and clinical characteristics of MCI in the Philippines. These data will help in defining the population at risk for the condition and in modifying the factors for its prevention. METHODS: From 2010 to 2019, 434 subjects were diagnosed with MCI based on the criteria published by the International Working Group on MCI last 2004. The demographic profile, vascular risk factors, and levels of Vitamin B12, Vitamin D, and homocysteine were reviewed. Results of neuropsychological tests, such as Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Mini-Mental State Exam (MMSE), and Montreal Cognitive Assessment (MoCA), were collected. The Fazekas score of the cranial magnetic resonance imaging of patients was also considered. RESULTS: The median age was 72 years [34-97] with 58.3% females. The median years of education were 14 [4-28]. Median ADAS-Cog, MMSE, and MoCA scores were 11.3 [0-27.67], 27 [13-30], and 21 [7-30], respectively. Hypertension and dyslipidemia were present in 66.8% and 64.1%, respectively. Normal homocysteine, Vitamin B12, and Vitamin D levels were found in 64.2%, 59.8%, and 48.8%, respectively. The median Fazekas score was 1 (59.4%). CONCLUSION: This is the first study to document the demographic and clinical profile of Filipinos with MCI in a clinical setting. This review serves as a foundation for increased understanding of MCI with the ultimate goal of controlling the factors which may impact its prevention.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Demografia , Feminino , Humanos , Masculino , Testes de Estado Mental e Demência , Testes Neuropsicológicos
2.
Dement Geriatr Cogn Disord ; 49(6): 557-564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33486486

RESUMO

BACKGROUND: Compared to Western populations, familial frontotemporal lobar degeneration (FTLD) is rare among Asians. Progranulin (GRN) gene mutation, which is a major cause of FTLD, is likewise rare. We present a family with FTLD from the Philippines with an autosomal dominant pattern of inheritance and GRN mutation and briefly review reports of GRN mutations in Asia. CASE PRESENTATION: The proband is 66 years old with progressive nonfluent aphasia (PNFA)-corticobasal syndrome . We assessed 3 generations of her pedigree and found 11 affected relatives with heterogenous phenotypes, usually behavioral variant frontotemporal dementia (FTD) and PNFA. Neuroimaging showed atrophy and hypometabolism consistent with FTD syndromes. White matter hyperintensities were seen in affected members even in the absence of vascular risk factors. A GRN mutation R110X was found in 6 members, 3 with symptoms and 3 were asymptomatic. Plasma GRN was low (<112 ng/mL) in all mutation carriers. No mutations were found in microtubule-associated protein tau, APP, PSEN1, and PSEN2 genes, and all were APOE3. CONCLUSION: This is the first Filipino family with autosomal dominant FTD documented with GRN mutation. Identifying families and cohorts would contribute to therapeutic developments in an area with FTD-GRN.


Assuntos
Degeneração Lobar Frontotemporal/genética , Mutação , Progranulinas/genética , Idoso , Feminino , Demência Frontotemporal/genética , Humanos , Filipinas
4.
J Biol Chem ; 292(27): 11466-11484, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28512126

RESUMO

The normal myoepithelium has a tumor-suppressing nature and inhibits the progression of ductal carcinoma in situ (DCIS) into invasive ductal carcinoma (IDC). Conversely, a growing number of studies have shown that tumor-associated myoepithelial cells have a tumor-promoting effect. Moreover, the exact role of tumor-associated myoepithelial cells in the DCIS-to-IDC development remains undefined. To address this, we explored the role of tumor-associated myoepithelial cells in the DCIS-to-IDC progression. We developed a direct coculture system to study the cell-cell interactions between DCIS cells and tumor-associated myoepithelial cells. Coculture studies indicated that tumor-associated myoepithelial cells promoted the invasive progression of a DCIS cell model in vitro, and mechanistic studies revealed that the interaction with DCIS cells stimulated tumor-associated myoepithelial cells to secrete TGFß1, which subsequently contributed to activating the TGFß/Smads pathway in DCIS cells. We noted that activation of the TGFß signaling pathway promoted the epithelial-mesenchymal transition, basal-like phenotypes, stemness, and invasiveness of DCIS cells. Importantly, xenograft studies further demonstrated that tumor-associated myoepithelial cells enhanced the DCIS-to-IDC progression in vivo Furthermore, we found that TGFß-mediated induction of oncogenic miR-10b-5p expression and down-regulation of RB1CC1, a miR-10b-5p-targeted tumor-suppressor gene, contributed to the invasive progression of DCIS. Our findings provide the first experimental evidence to directly support the paradigm that altered DCIS-associated myoepithelial cells promote the invasive progression of DCIS into IDC via TGFß signaling activation.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Células Epiteliais/metabolismo , Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Células Mieloides/patologia , Invasividade Neoplásica , Transplante de Neoplasias , RNA Neoplásico/metabolismo
5.
Circulation ; 130(5): 419-30, 2014 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-24899689

RESUMO

BACKGROUND: Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. After myocardial infarction, activated cardiac fibroblasts deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate, and new molecular targets are needed. METHODS AND RESULTS: Herein we report that glycogen synthase kinase-3ß (GSK-3ß) is phosphorylated (inhibited) in fibrotic tissues from ischemic human and mouse heart. Using 2 fibroblast-specific GSK-3ß knockout mouse models, we show that deletion of GSK-3ß in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction, and excessive scarring in the ischemic heart. Deletion of GSK-3ß induces a profibrotic myofibroblast phenotype in isolated cardiac fibroblasts, in post-myocardial infarction hearts, and in mouse embryonic fibroblasts deleted for GSK-3ß. Mechanistically, GSK-3ß inhibits profibrotic transforming growth factor-ß1/SMAD-3 signaling via interactions with SMAD-3. Moreover, deletion of GSK-3ß resulted in the significant increase of SMAD-3 transcriptional activity. This pathway is central to the pathology because a small-molecule inhibitor of SMAD-3 largely prevented fibrosis and limited left ventricular remodeling. CONCLUSIONS: These studies support targeting GSK-3ß in myocardial fibrotic disorders and establish critical roles of cardiac fibroblasts in remodeling and ventricular dysfunction.


Assuntos
Fibroblastos/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/enzimologia , Remodelação Ventricular/fisiologia , Idoso , Animais , Ativação Enzimática/fisiologia , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibrose/metabolismo , Fibrose/patologia , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Isquemia Miocárdica/patologia , Miocárdio/citologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , Proteína Smad3/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
6.
J Mol Cell Cardiol ; 72: 39-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24566221

RESUMO

ß-Adrenergic receptor (ßAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to relay pro-survival effects via unknown mechanisms. We hypothesized that acute ßAR-mediated EGFR transactivation in the heart promotes differential subcellular activation of ERK1/2 and Akt, promoting cell survival through modulation of apoptosis. C57BL/6 mice underwent acute i.p. injection with isoproterenol (ISO)±AG 1478 (EGFR antagonist) to assess the impact of ßAR-mediated EGFR transactivation on the phosphorylation of ERK1/2 (P-ERK1/2) and Akt (P-Akt) in distinct cardiac subcellular fractions. Increased P-ERK1/2 and P-Akt were observed in cytosolic, plasma membrane and nuclear fractions following ISO stimulation. Whereas the P-ERK1/2 response was EGFR-sensitive in all fractions, the P-Akt response was EGFR-sensitive only in the plasma membrane and nucleus, results confirmed in primary rat neonatal cardiomyocytes (RNCM). ßAR-mediated EGFR-transactivation also decreased apoptosis in serum-depleted RNCM, as measured via TUNEL as well as caspase 3 activity/cleavage, which were sensitive to the inhibition of either ERK1/2 (PD184352) or Akt (LY-294002) signaling. Caspase 3 activity/cleavage was also sensitive to the inhibition of transcription, which, with an increase in nuclear P-ERK1/2 and P-Akt in response to ISO, suggested that ßAR-mediated EGFR transactivation may regulate apoptotic gene transcription. An Apoptosis PCR Array identified tnfsf10 (TRAIL) to be altered by ISO in an EGFR-sensitive manner, results confirmed via RT-PCR and ELISA measurement of both membrane-bound and soluble cardiomyocyte TRAIL levels. ßAR-mediated EGFR transactivation induces differential subcellular activation of ERK1/2 and Akt leading to increased cell survival through the modulation of caspase 3 activity and apoptotic gene expression in cardiomyocytes.


Assuntos
Receptores ErbB/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Adrenérgicos beta/genética , Agonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Gatos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Isoproterenol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Tirfostinas/farmacologia
7.
J Biol Chem ; 288(31): 22481-92, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23814062

RESUMO

The L-α-lysophosphatidylinositol (LPI)-sensitive receptor GPR55 is coupled to Ca(2+) signaling. Low levels of GPR55 expression in the heart have been reported. Similar to other G protein-coupled receptors involved in cardiac function, GPR55 may be expressed both at the sarcolemma and intracellularly. Thus, to explore the role of GPR55 in cardiomyocytes, we used calcium and voltage imaging and extracellular administration or intracellular microinjection of GPR55 ligands. We provide the first evidence that, in cultured neonatal ventricular myocytes, LPI triggers distinct signaling pathways via GPR55, depending on receptor localization. GPR55 activation at the sarcolemma elicits, on one hand, Ca(2+) entry via L-type Ca(2+) channels and, on the other, inositol 1,4,5-trisphosphate-dependent Ca(2+) release. The latter signal is further amplified by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Conversely, activation of GPR55 at the membrane of intracellular organelles promotes Ca(2+) release from acidic-like Ca(2+) stores via the endolysosomal NAADP-sensitive two-pore channels. This response is similarly enhanced by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Extracellularly applied LPI produces Ca(2+)-independent membrane depolarization, whereas the Ca(2+) signal induced by intracellular microinjection of LPI converges to hyperpolarization of the sarcolemma. Collectively, our findings point to GPR55 as a novel G protein-coupled receptor regulating cardiac function at two cellular sites. This work may serve as a platform for future studies exploring the potential of GPR55 as a therapeutic target in cardiac disorders.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores de Canabinoides/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Organelas/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Front Neurosci ; 18: 1421675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005845

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia globally, having a pathophysiology that is complex and multifactorial. Recent findings highlight the significant role of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs) in the molecular mechanisms underlying AD. These ncRNAs are involved in critical biological processes such as cell proliferation, apoptosis, oxidative stress, amyloid-beta aggregation, tau phosphorylation, neuroinflammation, and autophagy, which are pivotal in AD development and progression. This systematic review aims to consolidate current scientific knowledge on the role of ncRNAs in AD, making it the first to encompass the four types of ncRNAs associated with the disease. Our comprehensive search and analysis reveal that ncRNAs not only play crucial roles in the pathogenesis of AD but also hold potential as biomarkers for its early detection and as novel therapeutic targets. Specifically, the findings underscore the significance of miRNAs in regulating genes involved in key AD pathways such as activin receptor signaling pathway, actomyosin contractile ring organization, and advanced glycation endproducts-receptor advanced glycation endproducts (AGE-RAGE) signaling pathway. This review also highlights the potential of ncRNAs in unveiling novel diagnostic and therapeutic strategies, emphasizing the need for further research to validate their clinical utility. Our systematic exploration provides a foundation for future bioinformatic analyses and the development of ncRNA-based precision medicine approaches for AD, offering new insights into the disease's molecular pathology and paving the way for innovative treatment strategies. Systematic review registration: PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42022355307.

9.
J AOAC Int ; 104(2): 389-396, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33259582

RESUMO

BACKGROUND: Bisphenol A (BPA) is a chemical of concern in the food industry. There is a need for a sensitive analytical method for the determination of BPA in beverages. OBJECTIVE: To develop a method for the determination of BPA in carbonated, non-carbonated, and non-alcoholic drinks. METHOD: Replicates of a carbonated soft drink, orange juice with pulp, and a dairy-based coffee drink at spiking levels ranging from 0 to 32 ng/mL were analyzed. The carbonated soft drink was adjusted to pH 7.4 and diluted with phosphate buffered saline (PBS). The orange juice with pulp and the dairy-based coffee drink were extracted with methanol and sodium chloride, then diluted with PBS. RESULTS: LOD ranged from 0.06 to 0.08 ng/mL and LOQ ranged from 0.10 to 0.14 ng/mL. Recoveries of BPA from all sample types at 1 to 16 ng/mL spiked levels were between 93 and 100%; relative standard deviation (RSDr, %) ranged from 0.71 to 8.38% depending on matrix and spiking levels. CONCLUSIONS: The results indicate that the method for determination of BPA in carbonated, non-carbonated, and non-alcoholic drinks is reproducible and meets AOAC Official MethodSM performance criteria. HIGHLIGHTS: The test portions were filtered and the filtrates applied to an immunoaffinity column (IAC) containing antibodies specific for BPA. After the column was washed with water, BPA was eluted from the IAC with 80% methanol and the eluate was directly injected, or concentrated and injected, into ultra-performance liquid chromatography (UPLC) with fluorescence detector (FLD) for separation, detection, and quantitation.


Assuntos
Compostos Benzidrílicos , Fenóis , Compostos Benzidrílicos/análise , Bebidas/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Fenóis/análise
10.
ACS Biomater Sci Eng ; 7(11): 5230-5241, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34699182

RESUMO

Skin regeneration in chronic wounds is often delayed due to persistent inflammation induced by underlying conditions such as diabetes. This effect is mediated, in part, by macrophages present in the wound, which can be stimulated to adopt either pro- or anti-inflammatory phenotypes depending on the status of the local microenvironment. In this work, the prohealing chemokine stromal cell-derived factor-1 alpha (SDF-1α) is controllably released from a hydrogel-based biomaterial to promote skin tissue regeneration and wound closure. This innovative nanocomposite hydrogel system releases liposomal stromal cell-derived factor-1 alpha (lipoSDF) as a new treatment approach for dorsal full-thickness skin wounds in wild-type and diabetic mice. Using this strategy, the recruitment and polarization of macrophages primarily of the anti-inflammatory phenotype were observed, along with a decreased amount of open wound surface area in diabetic mice after 28 days. This was accompanied by histological observations of increased epidermal stratification and dermal angiogenesis. These findings represent an important step of investigation distinctive in its field for developing immunomodulatory biomaterials that are able to influence macrophage phenotype and promote healing as hydrogel-based wound dressings.


Assuntos
Quimiocina CXCL12 , Diabetes Mellitus Experimental , Animais , Macrófagos , Camundongos , Nanogéis , Fenótipo
11.
Acta Biomater ; 121: 204-213, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271356

RESUMO

Modular tissue engineering is a promising biofabrication strategy to create engineered bone grafts in a bottom-up manner, in which cell-laden micro-modules are prepared as basic building blocks to assemble macroscopic tissues via different integrating mechanisms. In this study, we prepared collagen microbeads loaded with human bone marrow derived mesenchymal stem cells (BMSCs) using a microfluidic approach. The cell-laden microbeads were characterized for size change, cell activity, osteogenesis, as well as their self-assembly properties to generate centimeter-sized constructs. Moreover, using the cell-laden beads as a supporting medium, induced pluripotent stem cell-derived endothelial cells (iPSC-EC) were patterned inside bead aggregates through extrusion-based 3D printing. This fabrication approach that combines modular tissue engineering and supports 3D printing has the potential to create 3D engineered bone grafts with a pre-existing, customized vasculature.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Humanos , Microesferas , Osteogênese , Engenharia Tecidual , Alicerces Teciduais
12.
Redox Biol ; 45: 102018, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34140262

RESUMO

Hyperhomocysteinemia (HHcy) is an established and potent independent risk factor for degenerative diseases, including cardiovascular disease (CVD), Alzheimer disease, type II diabetes mellitus, and chronic kidney disease. HHcy has been shown to inhibit proliferation and promote inflammatory responses in endothelial cells (EC), and impair endothelial function, a hallmark for vascular injury. However, metabolic processes and molecular mechanisms mediating HHcy-induced endothelial injury remains to be elucidated. This study examined the effects of HHcy on the expression of microRNA (miRNA) and mRNA in human aortic EC treated with a pathophysiologically relevant concentration of homocysteine (Hcy 500 µM). We performed a set of extensive bioinformatics analyses to identify HHcy-altered metabolic and molecular processes. The global functional implications and molecular network were determined by Gene Set Enrichment Analysis (GSEA) followed by Cytoscape analysis. We identified 244 significantly differentially expressed (SDE) mRNA, their relevant functional pathways, and 45 SDE miRNA. HHcy-altered SDE inversely correlated miRNA-mRNA pairs (45 induced/14 reduced mRNA) were discovered and applied to network construction using an experimentally verified database. We established a hypothetical model to describe the biochemical and molecular network with these specified miRNA/mRNA axes, finding: 1) HHcy causes metabolic reprogramming by increasing glucose uptake and oxidation, by glycogen debranching and NAD+/CoA synthesis, and by stimulating mitochondrial reactive oxygen species production via NNT/IDH2 suppression-induced NAD+/NADP-NADPH/NADP+ metabolism disruption; 2) HHcy activates inflammatory responses by activating inflammasome-pyroptosis mainly through ↓miR193b→↑CASP-9 signaling and by inducing IL-1ß and adhesion molecules through the ↓miR29c→↑NEDD9 and the ↓miR1256→↑ICAM-1 axes, as well as GPCR and interferon α/ß signaling; 3) HHcy promotes cell degradation by the activation of lysosome autophagy and ubiquitin proteasome systems; 4) HHcy causes cell cycle arrest at G1/S and S/G2 transitions, suppresses spindle checkpoint complex and cytokinetic abscission, and suppresses proliferation through ↓miRNA335/↑VASH1 and other axes. These findings are in accordance with our previous studies and add a wealth of heretofore-unexplored molecular and metabolic mechanisms underlying HHcy-induced endothelial injury. This is the first study to consider the effects of HHcy on both global mRNA and miRNA expression changes for mechanism identification. Molecular axes and biochemical processes identified in this study are useful not only for the understanding of mechanisms underlying HHcy-induced endothelial injury, but also for discovering therapeutic targets for CVD in general.


Assuntos
Diabetes Mellitus Tipo 2 , Hiper-Homocisteinemia , Células Endoteliais , Homocisteína , Humanos , Hiper-Homocisteinemia/genética , Oxirredução , Transdução de Sinais
13.
Adv Healthc Mater ; 10(23): e2101249, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617414

RESUMO

Breast cancer and its most radical treatment, the mastectomy, significantly impose both physical transformations and emotional pain in thousands of women across the globe. Restoring the natural appearance of a nipple-areola complex directly on the reconstructed breast represents an important psychological healing experience for these women and remains an unresolved clinical challenge, as current restorative techniques render a flattened disfigured skin tab within a single year. To provide a long-term solution for nipple reconstruction, this work presents 3D printed hybrid scaffolds composed of complementary biodegradable gelatin methacrylate and synthetic non-degradable poly(ethylene) glycol hydrogels to foster the regeneration of a viable nipple-areola complex. In vitro results showcased the robust structural capacity and long-term shape retention of the nipple projection amidst internal fibroblastic contraction, while in vivo subcutaneous implantation of the 3D printed nipple-areola demonstrated minimal fibrotic encapsulation, neovascularization, and the formation of healthy granulation tissue. Envisioned as subdermal implants, these nipple-areola bioprinted regenerative grafts have the potential to transform the appearance of the newly reconstructed breast, reduce subsequent surgical intervention, and revolutionize breast reconstruction practices.


Assuntos
Neoplasias da Mama , Mamilos , Neoplasias da Mama/cirurgia , Estética , Feminino , Humanos , Mastectomia , Impressão Tridimensional
14.
Front Neurol ; 12: 645913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093394

RESUMO

Frontotemporal Dementia (FTD) is a common cause of Young Onset Dementia and has diverse clinical manifestations involving behavior, executive function, language and motor function, including parkinsonism. Up to 50% of FTD patients report a positive family history, supporting a strong genetic basis, particularly in cases with both FTD and amyotrophic lateral sclerosis (FTD-ALS). Mutations in three genes are associated with the majority of familial FTD (fFTD) cases - microtubule associated protein tau gene (MAPT), granulin precursor (GRN), and hexanucleotide repeat expansions in chromosome 9 open reading frame 72- SMCR8complex subunit (C9orf72) while mutations in other genes such as optineurin (OPTN) have rarely been reported. Mutations in OPTN have been reported mostly in familial and sporadic cases of ALS, or in rare cases of FTD-ALS, but not in association with pure or predominant FTD and/or parkinsonian phenotype. Here, we report for the first time, a family from the Philippines with four members harboring a novel frameshift insertion at OPTN (Chr 10:13166090 G>GA) p.Lys328GluTer11, three of whom presented with FTD-related phenotypes. Additionally, one sibling heterozygous for the frameshift insertion had a predominantly parkinsonian phenotype resembling corticobasal syndrome, but it remains to be determined if this phenotype is related to the frameshift insertion. Notably, none of the affected members showed any evidence of motor neuron disease or ALS at the time of writing, both clinically and on electrophysiological testing, expanding the phenotypic spectrum of OPTN mutations. Close follow-up of mutation carriers for the development of new clinical features and wider investigation of additional family members with further genetic analyses will be conducted to investigate the possibility of other genetic modifiers in this family which could explain phenotypic heterogeneity.

15.
Biomolecules ; 10(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302540

RESUMO

Long noncoding RNA differentiation antagonizing nonprotein coding RNA (lncRNA-DANCR) is associated with poor prognosis in multiple cancers, and promotes cancer stemness and invasion. However, the exact mechanisms by which DANCR promotes non-small cell lung cancer (NSCLC) remain elusive. In this study, we determined that DANCR knockdown (KD) impeded cell migration and reduced stem-like characteristics in two NSCLC cell lines, A549 and H1755. Wnt signaling was shown to promote NSCLC proliferation, stemness, and invasion; therefore, we hypothesized that DANCR may regulate these activities through induction of the Wnt/ß-catenin pathway. DANCR KD reduced ß-catenin signaling and protein expression, and decreased the expression of ß-catenin gene targets c-Myc and Axin2. One of the well-defined functions of lncRNAs is their ability to bind and inhibit microRNAs. Through in silico analysis, we identified tumor suppressor miR-216a as a potential binding partner to DANCR, and confirmed this binding through coimmunoprecipitation and luciferase-reporter assays. Furthermore, we show that DANCR-induced ß-catenin protein expression may be blocked with miR-216a overexpression. Our findings illustrate a role of DANCR in NSCLC migration and stemness, and suggest a novel DANCR/miR-216a signaling axis in the Wnt/ß-catenin pathway.


Assuntos
Células Epiteliais/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Células A549 , Apoptose/genética , Proteína Axina/genética , Proteína Axina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , beta Catenina/metabolismo
16.
Acta Biomater ; 108: 67-76, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32194261

RESUMO

Chronic, non-healing skin and soft tissue wounds are susceptible to infection, difficult to treat clinically, and can severely reduce a patient's quality of life. A key aspect of this issue is the impaired recruitment of mesenchymal stem cells (MSCs), which secrete regenerative cytokines and modulate the phenotypes of other effector cells that promote healing. We have engineered a therapeutic delivery system that can controllably release the pro-healing chemokine stromal cell derived factor-1α (SDF-1α) to induce the migration of MSCs. In order to protect the protein cargo from hydrolytic degradation and control its release, we have loaded SDF-1α in anionic liposomes (lipoSDF) and embedded them in gelatin methacrylate (GelMA) to form a nanocomposite hydrogel. In this study, we quantify the release of SDF-1α from our hydrogel system and measure the induced migration of MSCs in vitro via a transwell assay. Lastly, we evaluate the ability of this system to activate intracellular signaling in MSCs by using Western blots to probe for the phosphorylation of key proteins in the mTOR pathway. To our knowledge, this is the first study to report the delivery of liposomal SDF-1α using a nanocomposite approach. The results of this study expand on our current understanding of factors that can be modified to affect MSC behavior and phenotype. Furthermore, our findings contribute to the development of new hydrogel-based therapeutic delivery strategies for clinical wound healing applications. STATEMENT OF SIGNIFICANCE: Chronic, non-healing wounds promote an inflammatory environment that inhibits the migration of mesenchymal stem cells (MSCs), which secrete pro-healing and regenerative cytokines. The goal of this project is to apply principles of tissue engineering to achieve controllable release of the pro-healing chemokine SDF-1α to modulate the intracellular signaling and migratory behavior of MSCs. In this work, we introduce a nanocomposite strategy to tailor the release of SDF-1α using a liposome/gelatin methacrylate hydrogel approach. We are the first group to report the delivery of liposomal SDF-1α using this strategy. Our findings aim to further elucidate the role of MSCs in directing wound healing and guide the development of immunomodulatory and therapeutic delivery strategies for clinical wound healing applications.


Assuntos
Quimiocina CXCL12 , Gelatina , Movimento Celular , Gelatina/farmacologia , Humanos , Lipossomos , Metacrilatos , Nanogéis , Qualidade de Vida
17.
Adv Healthc Mater ; 8(5): e1801471, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30707508

RESUMO

The skin is responsible for several important physiological functions and has enormous clinical significance in wound healing. Tissue engineered substitutes may be used in patients suffering from skin injuries to support regeneration of the epidermis, dermis, or both. Skin substitutes are also gaining traction in the cosmetics and pharmaceutical industries as alternatives to animal models for product testing. Recent biomedical advances, ranging from cellular-level therapies such as mesenchymal stem cell or growth factor delivery, to large-scale biofabrication techniques including 3D printing, have enabled the implementation of unique strategies and novel biomaterials to recapitulate the biological, architectural, and functional complexity of native skin. This progress report highlights some of the latest approaches to skin regeneration and biofabrication using tissue engineering techniques. Current challenges in fabricating multilayered skin are addressed, and perspectives on efforts and strategies to meet those limitations are provided. Commercially available skin substitute technologies are also examined, and strategies to recapitulate native physiology, the role of regulatory agencies in supporting translation, as well as current clinical needs, are reviewed. By considering each of these perspectives while moving from bench to bedside, tissue engineering may be leveraged to create improved skin substitutes for both in vitro testing and clinical applications.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Pele/citologia , Engenharia Tecidual/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Humanos , Impressão Tridimensional , Regeneração/fisiologia , Pele Artificial , Alicerces Teciduais/química , Cicatrização/fisiologia
18.
Histol Histopathol ; 33(1): 1-10, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28540715

RESUMO

Endothelial lipase (LIPG) plays a critical role in lipoprotein metabolism, cytokine expression, and the lipid composition of cells. Thus far, the extensive investigations of LIPG have focused on its mechanisms and involvement in metabolic syndromes such as atherosclerosis. However, recent developments have found that LIPG plays a role in cancer. This review summarizes the field of LIPG study. We focus on the role of LIPG in lipid metabolism and the inflammatory response, and highlight the recent insights in its involvement in tumor progression. Finally, we discuss potential therapeutic strategies for targeting LIPG in cancer, and the therapeutic potential of LIPG as a drug target.


Assuntos
Metabolismo Energético , Inflamação/enzimologia , Lipase/metabolismo , Metabolismo dos Lipídeos , Neoplasias/enzimologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipase/química , Lipase/genética , Neoplasias/genética , Neoplasias/patologia , Conformação Proteica , Relação Estrutura-Atividade
19.
Curr Drug Targets ; 18(4): 377-388, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27307150

RESUMO

The use of imatinib, second and third generation ABL tyrosine kinase inhibitors (TKI) (i.e. dasatinib, nilotinib, bosutinib and ponatinib) made CML a clinically manageable and, in a small percentage of cases, a cured disease. TKI therapy also turned CML blastic transformation into a rare event; however, disease progression still occurs in those patients who are refractory, not compliant with TKI therapy or develop resistance to multiple TKIs. In the past few years, it became clear that the BCRABL1 oncogene does not operate alone to drive disease emergence, maintenance and progression. Indeed, it seems that bone marrow (BM) microenvironment-generated signals and cell autonomous BCRABL1 kinase-independent genetic and epigenetic alterations all contribute to: i. persistence of a quiescent leukemic stem cell (LSC) reservoir, ii. innate or acquired resistance to TKIs, and iii. progression into the fatal blast crisis stage. Herein, we review the intricate leukemic network in which aberrant, but finely tuned, survival, mitogenic and self-renewal signals are generated by leukemic progenitors, stromal cells, immune cells and metabolic microenvironmental conditions (e.g. hypoxia) to promote LSC maintenance and blastic transformation.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epigênese Genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
20.
PLoS One ; 9(6): e99195, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901703

RESUMO

ß-adrenergic receptor (ßAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute ßAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the ßAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib), including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, ßAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Miocárdio/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptores Adrenérgicos beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Feminino , Gefitinibe , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Adrenérgicos beta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA