Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 610(7931): 356-365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198802

RESUMO

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Células Estreladas do Fígado , Neoplasias Hepáticas , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Progressão da Doença , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Camundongos , Miofibroblastos/patologia
2.
Proc Natl Acad Sci U S A ; 121(9): e2314620121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381784

RESUMO

Photon-controlled pyroptosis activation (PhotoPyro) is a promising technique for cancer immunotherapy due to its noninvasive nature, precise control, and ease of operation. Here, we report that biomolecular photoredox catalysis in cells might be an important mechanism underlying PhotoPyro. Our findings reveal that the photocatalyst lutetium texaphyrin (MLu) facilitates rapid and direct photoredox oxidation of nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and various amino acids, thereby triggering pyroptosis through the caspase 3/GSDME pathway. This mechanism is distinct from the well-established role of MLu as a photodynamic therapy sensitizer in cells. Two analogs of MLu, bearing different coordinated central metal cations, were also explored as controls. The first control, gadolinium texaphyrin (MGd), is a weak photocatalyst but generates reactive oxygen species (ROS) efficiently. The second control, manganese texaphyrin (MMn), is ineffective as both a photocatalyst and a ROS generator. Neither MGd nor MMn was found to trigger pyroptosis under the conditions where MLu was active. Even in the presence of a ROS scavenger, treating MDA-MB-231 cells with MLu at concentrations as low as 50 nM still allows for pyroptosis photo-activation. The present findings highlight how biomolecular photoredox catalysis could contribute to pyroptosis activation by mechanisms largely independent of ROS.


Assuntos
Metaloporfirinas , Piroptose , Espécies Reativas de Oxigênio/metabolismo
3.
Nat Methods ; 20(1): 139-148, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522500

RESUMO

Quantitative data analysis is important for any single-molecule localization microscopy (SMLM) workflow to extract biological insights from the coordinates of the single fluorophores. However, current approaches are restricted to simple geometries or require identical structures. Here, we present LocMoFit (Localization Model Fit), an open-source framework to fit an arbitrary model to localization coordinates. It extracts meaningful parameters from individual structures and can select the most suitable model. In addition to analyzing complex, heterogeneous and dynamic structures for in situ structural biology, we demonstrate how LocMoFit can assemble multi-protein distribution maps of six nuclear pore components, calculate single-particle averages without any assumption about geometry or symmetry, and perform a time-resolved reconstruction of the highly dynamic endocytic process from static snapshots. We provide extensive simulation and visualization routines to validate the robustness of LocMoFit and tutorials to enable any user to increase the information content they can extract from their SMLM data.


Assuntos
Corantes Fluorescentes , Imagem Individual de Molécula , Funções Verossimilhança , Corantes Fluorescentes/química
4.
Chem Rev ; 123(15): 9204-9264, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419504

RESUMO

Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.

5.
Nature ; 567(7749): 516-520, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30818324

RESUMO

The nitrogen cycle has been radically changed by human activities1. China consumes nearly one third of the world's nitrogen fertilizers. The excessive application of fertilizers2,3 and increased nitrogen discharge from livestock, domestic and industrial sources have resulted in pervasive water pollution. Quantifying a nitrogen 'boundary'4 in heterogeneous environments is important for the effective management of local water quality. Here we use a combination of water-quality observations and simulated nitrogen discharge from agricultural and other sources to estimate spatial patterns of nitrogen discharge into water bodies across China from 1955 to 2014. We find that the critical surface-water quality standard (1.0 milligrams of nitrogen per litre) was being exceeded in most provinces by the mid-1980s, and that current rates of anthropogenic nitrogen discharge (14.5 ± 3.1 megatonnes of nitrogen per year) to fresh water are about 2.7 times the estimated 'safe' nitrogen discharge threshold (5.2 ± 0.7 megatonnes of nitrogen per year). Current efforts to reduce pollution through wastewater treatment and by improving cropland nitrogen management can partially remedy this situation. Domestic wastewater treatment has helped to reduce net discharge by 0.7 ± 0.1 megatonnes in 2014, but at high monetary and energy costs. Improved cropland nitrogen management could remove another 2.3 ± 0.3 megatonnes of nitrogen per year-about 25 per cent of the excess discharge to fresh water. Successfully restoring a clean water environment in China will further require transformational changes to boost the national nutrient recycling rate from its current average of 36 per cent to about 87 per cent, which is a level typical of traditional Chinese agriculture. Although ambitious, such a high level of nitrogen recycling is technologically achievable at an estimated capital cost of approximately 100 billion US dollars and operating costs of 18-29 billion US dollars per year, and could provide co-benefits such as recycled wastewater for crop irrigation and improved environmental quality and ecosystem services.


Assuntos
Agricultura/métodos , Fertilizantes/análise , Fertilizantes/provisão & distribuição , Ciclo do Nitrogênio , Nitrogênio/análise , Nitrogênio/provisão & distribuição , Qualidade da Água/normas , Agricultura/estatística & dados numéricos , Animais , China , Ecossistema , Monitoramento Ambiental , Abastecimento de Alimentos/métodos , Abastecimento de Alimentos/estatística & dados numéricos , Humanos , Poluentes Químicos da Água/análise , Poluição da Água/análise
6.
Proc Natl Acad Sci U S A ; 119(34): e2210504119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969782

RESUMO

Elucidating the underlying photochemical mechanisms of action (MoA) of photodynamic therapy (PDT) may allow its efficacy to be improved and could set the stage for the development of new classes of PDT photosensitizers. Here, we provide evidence that "photoredox catalysis in cells," wherein key electron transport pathways are disrupted, could constitute a general MoA associated with PDT. Taking the cellular electron donor nicotinamide adenine dinucleotide as an example, we have found that well-known photosensitizers, such as Rose Bengal, BODIPY, phenoselenazinium, phthalocyanine, and porphyrin derivatives, are able to catalyze its conversion to NAD+. This MoA stands in contrast to conventional type I and type II photoactivation mechanisms involving electron and energy transfer, respectively. A newly designed molecular targeting photocatalyst (termed CatER) was designed to test the utility of this mechanism-based approach to photosensitizer development. Photoexcitation of CatER induces cell pyroptosis via the caspase 3/GSDME pathway. Specific epidermal growth factor receptor positive cancer cell recognition, high signal-to-background ratio tumor imaging (SBRTI = 12.2), and good tumor growth inhibition (TGI = 77.1%) are all hallmarks of CatER. CatER thus constitutes an effective near-infrared pyroptotic cell death photo-inducer. We believe the present results will provide the foundation for the synthesis of yet-improved phototherapeutic agents that incorporate photocatalytic chemistry into their molecular design.


Assuntos
Antineoplásicos , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia
7.
Chem Soc Rev ; 53(10): 5291-5337, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38634467

RESUMO

Rechargeable batteries, typically represented by lithium-ion batteries, have taken a huge leap in energy density over the last two decades. However, they still face material/chemical challenges in ensuring safety and long service life at temperatures beyond the optimum range, primarily due to the chemical/electrochemical instabilities of conventional liquid electrolytes against aggressive electrode reactions and temperature variation. In this regard, a gel polymer electrolyte (GPE) with its liquid components immobilized and stabilized by a solid matrix, capable of retaining almost all the advantageous natures of the liquid electrolytes and circumventing the interfacial issues that exist in the all-solid-state electrolytes, is of great significance to realize rechargeable batteries with extended working temperature range. We begin this review with the main challenges faced in the development of GPEs, based on extensive literature research and our practical experience. Then, a significant section is dedicated to the requirements and design principles of GPEs for wide-temperature applications, with special attention paid to the feasibility, cost, and environmental impact. Next, the research progress of GPEs is thoroughly reviewed according to the strategies applied. In the end, we outline some prospects of GPEs related to innovations in material sciences, advanced characterizations, artificial intelligence, and environmental impact analysis, hoping to spark new research activities that ultimately bring us a step closer to realizing wide-temperature rechargeable batteries.

8.
Metab Eng ; 83: 61-74, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522576

RESUMO

5-Methyluridine (5-MU) is a prominent intermediate for industrial synthesis of several antiviral-drugs, however, its availability over the past decades has overwhelmingly relied on chemical and enzymatic strategies. Here, we have realized efficient production of 5-MU in E. coli, for the first time, via a designer artificial pathway consisting of a two-enzyme cascade (UMP 5-methylase and phosphatase). More importantly, we have engineered the E. coli cell factory to boost 5-MU production by systematic evaluation of multiple strategies, and as a proof of concept, we have further developed an antibiotic-free fermentation strategy to realize 5-MU production (10.71 g/L) in E. coli MB229 (a ΔthyA strain). Remarkably, we have also established a versatile and robust platform with exploitation of the engineered E. coli for efficient production of diversified UMP-derived chemicals. This study paves the way for future engineering of E. coli as a synthetic biology platform for acceleratively accessing UMP-derived chemical diversities.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
9.
Ann Hematol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922341

RESUMO

Approximately 40% of limited-stage (stage I and II) diffuse large B-cell lymphoma (LS-DLBCL) presents with extranodal disease. Extranodal LS-DLBCL may have significant biological differences and associated with worse outcomes than nodal disease. Although rituximab based chemoimmunotherapy is standard of first-line treatment, the role of consolidative radiotherapy (RT) in this particular subgroup is controversial. In this multicenter retrospective study, we evaluated the survival benefit of consolidative RT in patients diagnosed with extranodal LS-DLBCL and received rituximab-based chemoimmunotherapy with or without consolidative RT. A total of 328 patients were included, 129 patients (39.3%) received chemoimmunotherapy and consolidative RT, and 199 patients (60.7%) received chemoimmunotherapy alone. With a median follow-up of 5.1 years (range, 0.3-14.8 years), 5-year progression-free survival (PFS) and overall survival (OS) for all patients were 75.4% and 83.9%, respectively. In multivariate analyses, the addition of consolidative RT was associated with superior OS (P = 0.004) and PFS (P = 0.005). High stage-modified International Prognosis Index (SM-IPI) risk predicted worse OS (P = 0.001) and PFS (P = 0.005). Also, propensity score-matched analyses showed RT improved both OS (hazard ratio [HR] 0.228, 95% confidence index [CI] 0.111-0.467, P < 0.001) and PFS (HR 0.308, 95% CI 0.167-0.566, P < 0.001). Among patients who achieved CR, 49 patients (16.6%) developed disease relapse, of which 30.6% relapsed at local sites. Consolidative RT significantly reduced relapse risk (P = 0.002). Our results demonstrated that consolidative RT significantly improved outcomes in patients with extranodal LS-DLBCL in the rituximab era.

10.
Biotechnol Bioeng ; 121(2): 696-709, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994547

RESUMO

Intensified fed-batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed-batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult-to-sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent-perfusion fed-batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity. Unlike continuous perfusion or other semi-continuous processes such as hybrid perfusion fed-batch with only early-stage perfusion, IPFB applies limited times of intermittent perfusion in the mid-to-late stage of production and still inherits bolus feedings on nonperfusion days as in a fed-batch culture. Compared to IFB, an average titer increase of ~45% was obtained in eight recombinant CHO cell lines studied. Beyond IPFB, ultra-intensified IPFB (UI-IPFB) was designed with a markedly elevated seeding density of 20-80 × 106 cell/mL, achieved through the conventional alternating tangential flow filtration (ATF) perfusion expansion followed with a cell culture concentration step using the same ATF system. With UI-IPFB, up to ~6 folds of traditional fed-batch and ~3 folds of IFB productivity were achieved. Furthermore, the application grounded in these two novel processes showed broad-based feasibility in multiple cell lines and products of interest, and was proven to be effective in cost of goods reduction and readily scalable to a larger scale in existing facilities.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Cricetinae , Animais , Cricetulus , Células CHO , Perfusão
11.
Br J Anaesth ; 132(2): 334-342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044237

RESUMO

BACKGROUND: Delayed emergence from general anaesthesia poses a significant perioperative safety hazard. Subanaesthetic doses of ketamine not only deepen anaesthesia but also accelerate recovery from isoflurane anaesthesia; however, the mechanisms underlying this phenomenon remain elusive. Esketamine exhibits a more potent receptor affinity and fewer adverse effects than ketamine and exhibits shorter recovery times after brief periods of anaesthesia. As the paraventricular thalamus (PVT) plays a pivotal role in regulating wakefulness, we studied its role in the emergence process during combined esketamine and isoflurane anaesthesia. METHODS: The righting reflex and cortical electroencephalography were used as measures of consciousness in mice during isoflurane anaesthesia with coadministration of esketamine. The expression of c-Fos was used to determine neuronal activity changes in PVT neurones after esketamine administration. The effect of esketamine combined with isoflurane anaesthesia on PVT glutamatergic (PVTGlu) neuronal activity was monitored by fibre photometry, and chemogenetic technology was used to manipulate PVTGlu neuronal activity. RESULTS: A low dose of esketamine (5 mg kg-1) accelerated emergence from isoflurane general anaesthesia (474 [30] s vs 544 [39] s, P=0.001). Esketamine (5 mg kg-1) increased PVT c-Fos expression (508 [198] vs 258 [87], P=0.009) and enhanced the population activity of PVTGlu neurones (0.03 [1.7]% vs 6.9 [3.4]%, P=0.002) during isoflurane anaesthesia (1.9 [5.7]% vs -5.1 [5.3]%, P=0.016) and emergence (6.1 [6.2]% vs -1.1 [5.0]%, P=0.022). Chemogenetic suppression of PVTGlu neurones abolished the arousal-promoting effects of esketamine (459 [33] s vs 596 [33] s, P<0.001). CONCLUSIONS: Our results suggest that esketamine promotes recovery from isoflurane anaesthesia by activating PVTGlu neurones. This mechanism could explain the rapid arousability exhibited upon treatment with a low dose of esketamine.


Assuntos
Anestésicos Inalatórios , Isoflurano , Ketamina , Tálamo , Animais , Camundongos , Anestesia Geral , Anestésicos Inalatórios/farmacologia , Isoflurano/farmacologia , Ketamina/farmacologia , Tálamo/efeitos dos fármacos
12.
Int J Health Geogr ; 23(1): 7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454436

RESUMO

Current research on public spaces and mental health often focuses on the independent relationship of one or more social mediators, neglecting the nuanced implications and serial mechanisms inherent in the progressive social process. Using Wuhan city, China, as a study case with multi-source data, this research applies Multilevel Generalized Structural Equation Modeling and deep learning techniques to explore the differential effects of public spaces with varying degrees of publicness (i.e., typical, semi-, and privately owned) on rural migrants' mental health. Crucially, this study scrutinizes both explicit (social interaction) and implicit (perceived integration) social mechanisms to revisit the relationships. The findings reveal that not all public spaces equally influence mental health, with typical and privately owned public spaces conferring profound benefits. Notably, public spaces impact mental health chiefly through perceived integration instead of through direct social interaction. Social interaction improves mental health primarily by enhancing perceived integration, suggesting that meaningful connections beyond superficial encounters are critical. In particular, we observed significant social effects in typical and privately owned public spaces but limited social functionality in semi-public spaces. This evidence contributes to the knowledge required to create supportive social environments within public spaces, integral to nurturing inclusive urban development.


Assuntos
Saúde Mental , Migrantes , Humanos , Cidades , Meio Ambiente , China/epidemiologia
13.
Curr Microbiol ; 81(7): 218, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856763

RESUMO

Atractylodes macrocephala Koidz (AMK) is a perennial herb from the plant family Asteraceae (formerly Compositae). This herb is mainly distributed in mountainous wetlands in Zhejiang, Sichuan, Yunnan, and Hunan provinces of China. Its medicinal production and quality, however, are severely impacted by root rot disease. In our previous study, endophytic bacterium designated AM201 exerted a high biocontrol effect on the root rot disease of AMK. However, the molecular mechanisms underlying this effect remain unclear. In this study, the identity of strain AM201 as Rhodococcus sp. was determined through analysis of its morphology, physiological and biochemical characteristics, as well as 16S rDNA sequencing. Subsequently, we performed transcriptome sequencing and bioinformatics analysis to compare and analyze the transcriptome profiles of root tissues from two groups: AM201 (AMK seedlings inoculated with Fusarium solani [FS] and AM201) and FS (AMK seedlings inoculated with FS alone). We also conducted morphological, physiological, biochemical, and molecular identification analyses for the AM201 strain. We obtained 1,560 differentially expressed genes, including 187 upregulated genes and 1,373 downregulated genes. We screened six key genes (GOLS2, CIPK25, ABI2, egID, PG1, and pgxB) involved in the resistance of AM201 against AMK root rot disease. These genes play a critical role in reactive oxygen species (ROS) clearance, Ca2+ signal transduction, abscisic acid signal inhibition, plant root growth, and plant cell wall defense. The strain AM201 was identified as Rhodococcus sp. based on its morphological characteristics, physiological and biochemical properties, and 16S rDNA sequencing results. The findings of this study could enable to prevent and control root rot disease in AMK and could offer theoretical guidance for the agricultural production of other medicinal herbs.


Assuntos
Atractylodes , Endófitos , Perfilação da Expressão Gênica , Doenças das Plantas , Raízes de Plantas , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Rhodococcus/fisiologia , Atractylodes/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Endófitos/genética , Endófitos/metabolismo , Endófitos/classificação , Endófitos/fisiologia , Endófitos/isolamento & purificação , Transcriptoma , Fusarium/genética , Fusarium/fisiologia , China , RNA Ribossômico 16S/genética
14.
Mar Drugs ; 22(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921598

RESUMO

To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is of the glycoside hydrolase (GH) family 18 with a molecular weight of approximately 57 kDa, consisting of a GH18 catalytic domain and a cellulose-binding domain. We recorded its optimal activity at pH 5.0 and 55 °C. It exhibited excellent stability in a wide pH range of 3.0-10.0. Mg2+ (5 mM), and dithiothreitol (10 mM) significantly promoted MaChi1 activity. MaChi1 exhibited broad substrate specificity and hydrolyzed chitin, chitosan, cellulose, soluble starch, and N-acetyl chitooligosaccharides with polymerization degrees ranging from three to six. Moreover, MaChi1 exhibited an endo-type cleavage pattern, and it could efficiently convert colloidal chitin into N-acetyl-D-glucosamine (GlcNAc) and (GlcNAc)2 with yields of 227.2 and 505.9 mg/g chitin, respectively. Its high chitin-degrading capacity and exceptional pH tolerance makes it a promising tool with potential applications in chitin waste treatment and bioactive oligosaccharide production.


Assuntos
Quitina , Quitinases , Micromonospora , Quitinases/metabolismo , Quitinases/química , Quitinases/isolamento & purificação , Quitinases/genética , Quitina/análogos & derivados , Quitina/metabolismo , Quitina/química , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Micromonospora/enzimologia , Micromonospora/genética , Hidrólise , Escherichia coli/genética , Quitosana/química , Estabilidade Enzimática
15.
J Craniofac Surg ; 35(1): e24-e28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37622552

RESUMO

BACKGROUND AND PURPOSE: None of the previous studies have investigated the pathologic authenticity of affected arteries in moyamoya disease (MMD) and Quasi-MMD diagnosed by angiography. This study aimed to confirm the angiographic diagnosis of moyamoya as well as investigate the pathologic mechanisms in angiographically proven MMD and Quasi-MMD using high-resolution magnetic resonance imaging (MRI) in a large sample. METHODS: We prospectively studied 116 patients who had angiographically proven MMD and Quasi-MMD. Each affected internal carotid artery, and middle cerebral artery was independently evaluated. In addition, clinical features and postoperative outcomes were compared between hemispheres with MMD and moyamoya syndrome (MMS). RESULTS: Among 116 patients analyzed, 88 and 22 patients had angiographically proven MMD and Quasi-MMD, respectively. high-resolution magnetic resonance imaging confirmed bilateral MMD in 73 (83.0%) patients, 1 hemisphere with MMD and the other with intracranial atherosclerotic disease (ICAD) in 10 (11.4%) patients, and bilateral hemispheres with different vasculopathies in 5 (5.7%) patients. Detailed analysis of 204 affected hemispheres showed that several combinations of different vasculopathies were observed in the internal carotid artery and middle cerebral artery of the same hemisphere, such as ICAD-ICAD, ICAD-MMD, dissection-ICAD, and dissection-MMD. Hemispheres were assigned to MMD and MMS groups according to their vasculopathies. Transient ischemic attack occurred more frequently in hemispheres with MMD (48.1% versus 21.1%, P =0.024), whereas symptomatic ischemia was more common in hemispheres with MMS (57.9% versus 24.9%, P =0.002). However, postoperative cerebral infarction, symptom improvement and neo-formative collaterals showed no significant difference between hemispheres with MMD and MMS ( P >0.05). CONCLUSIONS: Patients with angiographically proven MMD or Quasi-MMD needed more accurate evaluation combined with high-resolution magnetic resonance imaging. Highly selected patients with MMS might also obtain benefits from surgical revascularization.


Assuntos
Aterosclerose , Doença de Moyamoya , Humanos , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Imageamento por Ressonância Magnética/métodos , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/patologia , Angiografia Cerebral/métodos
16.
J Craniofac Surg ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682949

RESUMO

The natural history of spinal cord cavernous malformation (SCM) may be characterized by recurrent episodes of hemorrhage resulting in a range of neurologic deficits, most of which are microhemorrhage and subsequent gliosis that can lead to progressive myelopathy. Macrohemorrhage with acute onset of symptoms is extremely rare and leads to irreversible neurologic deficits. In this article, we present an unusual case of ruptured cavernous malformation (CM) in the cervical spinal cord with large extralesional hemorrhage. The patient underwent an operation of posterior longitudinal myelotomy and had a good neurologic recovery. A histologic examination revealed the typical features of cavernous angioma.

17.
Chem Soc Rev ; 52(13): 4488-4514, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37338931

RESUMO

One-dimensional (1-D) nanomaterials possess unique shape-dependent phyicochemical properties and are increasingly recognized as promising materials for nanotechnology. 1-D nanomaterials can be classified according to their shape, such as nanorods, nanotubes, nanowires, self-assembled nanochains, etc., and have been applied in electronics, photonics, and catalysis. The biological characteristics of 1-D nanomaterials, including high drug loading efficiency, prolonged blood circulation, the ability to capture cancer cells, unique cellular uptake mechanisms, efficient photothermal conversion, and material tunability, have aided in extending their potential to biomedical applications, particularly in cancer therapy and diagnosis. This review highlights a novel perspective on emerging 1-D nanomaterials for cancer therapy and diagnosis by introducing the definition of 1-D nanomaterials, their shape-dependent physicochemical properties, biomedical applications, and recent advances in cancer therapy and diagnosis. This review also proposes unexplored potential nanomaterial types and therapeutic applications for 1-D nanomaterials. In particular, the most significant and exciting advances in recent years, including ultrasound-enabled sonodynamic therapy, magnetic field-based therapy, and bioresponsive 1-D nanomaterials for intracellular self-assembly in situ, are discussed along with novel therapeutic concepts, such as piezoelectric 1-D nanomaterials, nanozyme-based nanomedicine, and others.


Assuntos
Nanoestruturas , Neoplasias , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanotecnologia/métodos , Nanomedicina , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
18.
Nano Lett ; 23(17): 8326-8330, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37611221

RESUMO

Bacterially induced sepsis requires rapid bacterial detection and identification. Hours count for critically ill septic patients, while current culture-based detection requires at least 10 h up to several days. Here, we apply a microfluidic device equipped with a bacterially activated, macrophage-membrane-coating on nanowired-Si adsorbent surfaces for rapid, bacterial detection and Gram-identification in bacterially contaminated blood. Perfusion of suspensions of Gram-negative or Gram-positive bacteria through a microfluidic device equipped with membrane-coated adsorbent surfaces detected low (<10 CFU/mL) bacterial levels. Subsequent, in situ fluorescence-staining yielded Gram-identification for guiding antibiotic selection. In mixed Escherichia coli and Staphylococcus aureus suspensions, Gram-negative and Gram-positive bacteria were detected in the same ratios as those fixed in suspension. Results were validated with a 100% correct score by blinded evaluation (two observers) of 15 human blood samples, spiked with widely different bacterial strains or combinations of strains, demonstrating the potential of the platform for rapid (1.5 h in total) diagnosis of bacterial sepsis.


Assuntos
Bactérias , Sepse , Humanos , Suspensões , Dispositivos Lab-On-A-Chip , Escherichia coli , Macrófagos , Sepse/diagnóstico
19.
Int Orthop ; 48(2): 465-471, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37707599

RESUMO

PURPOSE: There is a lack of studies investigating the distal tibial rotation (DTR) during medial opening wedge high tibial osteotomy (MOWHTO). This study was designed to evaluate osseous factors influencing DTR in patients who underwent biplane MOWHTO. METHODS: A total of 106 knee joints in 69 patients who underwent surgery for varus malalignment of knee were reviewed. Based on several software, standard and actual hinge positions were defined in pre-operative and post-operative CT data. Pearson's correlation and Spearman's correlation analysis were performed with DTR change as the dependent variable. Independent variables included angles between standard and actual hinge in the sagittal (ASAHS) and axial (ASAHA) planes, pre-operative and post-operative medial proximal tibial angle, opening width (OW), tuberosity osteotomy angle, flange angle (FA), gap ratio, and hinge fracture. RESULTS: The distal tibia rotated approximately 0.35° internally. Pearson's and Spearman's correlation analysis showed that DTR change was associated with ASAHS, OW, and FA. Larger OW and FA resulted in higher external rotation angles. CONCLUSIONS: DTR change was significantly associated with ASAHS, followed by OW and FA rather than ASAHA if only considering osseous factors in biplane MOWHTO. The distal tibia tended to rotate externally when the actual hinge was inclined posteriorly to the standard hinge in the sagittal planes, but rotate externally or internally when the actual hinge was inclined anteriorly.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Osteotomia/efeitos adversos , Osteotomia/métodos , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Joelho , Estudos Retrospectivos
20.
Angew Chem Int Ed Engl ; 63(17): e202318800, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38443316

RESUMO

Organic small-molecule fluorophores, characterized by flexible chemical structure and adjustable optical performance, have shown tremendous potential in biosensing. However, classical organic fluorophore motifs feature large overlap between excitation and emission spectra, leading to the requirement of advanced optical set up to filter desired signal, which limits their application in scenarios with simple settings. Here, a series of wavelength-tunable small-molecule fluorescent dyes (PTs) bearing simple organic moieties have been developed, which exhibit Stokes shift up to 262 nm, molar extinction coefficients ranged 30,000-100,000 M-1 cm-1, with quantum yields up to 54.8 %. Furthermore, these dyes were formulated into fluorescent nanoparticles (PT-NPs), and applied in lateral flow assay (LFA). Consequently, limit of detection for SARS-CoV-2 nucleocapsid protein reached 20 fM with naked eye, a 100-fold improvement in sensitivity compared to the pM detection level for colloidal gold-based LFA. Besides, combined with loop-mediated isothermal amplification (LAMP), the LFA system achieved the visualization of single copy level nucleic acid detection for monkeypox (Mpox).


Assuntos
Nanopartículas , Ácidos Nucleicos , Corantes Fluorescentes/química , Nanopartículas/química , Técnicas de Amplificação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA