Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410417, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924241

RESUMO

The electrochemical production of hydrogen peroxide (H2O2) using metal-free catalysts has emerged as a viable and sustainable alternative to the conventional anthraquinone process. However, the precise architectural design of these electrocatalysts poses a significant challenge, requiring intricate structural engineering to optimize electron transfer during the oxygen reduction reaction (ORR). Herein, we introduce a novel design of covalent organic frameworks (COFs) that effectively shift the ORR from a four-electron to a more advantageous two-electron pathway. Notably, the JUC-660 COF, with strategically charge-modified benzyl moieties, achieved a continuous high H2O2 yield of over 1200 mmol g-1 h-1 for an impressive duration of over 85 hours in a flow cell setting, marking it as one of the most efficient metal-free and non-pyrolyzed H2O2 electrocatalysts reported to date. Theoretical computations alongside in-situ infrared spectroscopy indicate that JUC-660 markedly diminishes the adsorption of the OOH* intermediate, thereby steering the ORR towards the desired pathway. Furthermore, the versatility of JUC-660 was demonstrated through its application in the electro-Fenton reaction, where it efficiently and rapidly removed aqueous contaminants. This work delineates a pioneering approach to altering the ORR pathway, ultimately paving the way for the development of highly effective metal-free H2O2 electrocatalysts.

2.
Biotechnol Bioeng ; 112(4): 705-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25363722

RESUMO

Butanol biosynthesis through aldehyde/alcohol dehydrogenase (adhE2) is usually limited by NADH availability, resulting in low butanol titer, yield, and productivity. To alleviate this limitation and improve n-butanol production by Clostridium tyrobutyricum Δack-adhE2 overexpressing adhE2, the NADH availability was increased by using methyl viologen (MV) as an artificial electron carrier to divert electrons from ferredoxin normally used for H2 production. In the batch fermentation with the addition of 500 µM MV, H2 , acetate, and butyrate production was reduced by more than 80-90%, while butanol production increased more than 40% to 14.5 g/L. Metabolic flux analysis revealed that butanol production increased in the fermentation with MV because of increased NADH availability as a result of reduced H2 production. Furthermore, continuous butanol production of ∼55 g/L with a high yield of ∼0.33 g/g glucose and extremely low ethanol, acetate, and butyrate production was obtained in fed-batch fermentation with gas stripping for in situ butanol recovery. This study demonstrated a stable and reliable process for high-yield and high-titer n-butanol production by metabolically engineered C. tyrobutyricum by applying MV as an electron carrier to increase butanol biosynthesis.


Assuntos
1-Butanol/metabolismo , Clostridium tyrobutyricum/enzimologia , Clostridium tyrobutyricum/metabolismo , Glucose/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Oxirredutases/metabolismo , Acetatos/metabolismo , Biotecnologia/métodos , Butiratos/metabolismo , Clostridium tyrobutyricum/genética , Fermentação , Expressão Gênica , Hidrogênio/metabolismo , Análise do Fluxo Metabólico , NAD/metabolismo , Oxirredutases/genética , Paraquat/metabolismo
3.
Appl Microbiol Biotechnol ; 99(11): 4917-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25851718

RESUMO

The overexpression of CoA transferase (ctfAB), which catalyzes the reaction: acetate/butyrate + acetoacetyl-CoA → acetyl/butyryl-CoA + acetoacetate, was studied for its effects on acid reassimilation and butanol biosynthesis in Clostridium tyrobutyricum (Δack, adhE2). The plasmid pMTL007 was used to co-express adhE2 and ctfAB from Clostridium acetobutylicum ATCC 824. In addition, the sol operon containing ctfAB, adc (acetoacetate decarboxylase), and ald (aldehyde dehydrogenase) was also cloned from Clostridium beijerinckii NCIMB 8052 and expressed in C. tyrobutyricum (Δack, adhE2). Mutants expressing these genes were evaluated for their ability to produce butanol from glucose in batch fermentations at pH 5.0 and 6.0. Compared to C. tyrobutyricum (Δack, adhE2) without expressing ctfAB, all mutants with ctfAB overexpression produced more butanol, with butanol yield increased to 0.22 - 0.26 g/g (vs. 0.10 - 0.13 g/g) and productivity to 0.35 g/l h (vs. 0.13 g/l h) because of the reduced acetate and butyrate production. The expression of ctfAB also resulted in acetone production from acetoacetate through a non-enzymatic decarboxylation.


Assuntos
1-Butanol/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Acetona/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Clostridium beijerinckii/enzimologia , Clostridium beijerinckii/genética , Clostridium tyrobutyricum/enzimologia , Fermentação , Deleção de Genes , Expressão Gênica , Glucose/metabolismo , Plasmídeos
4.
EBioMedicine ; 105: 105195, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870545

RESUMO

BACKGROUND: Response to antipsychotic drugs (APD) varies greatly among individuals and is affected by genetic factors. This study aims to demonstrate genome-wide associations between copy number variants (CNVs) and response to APD in patients with schizophrenia. METHODS: A total of 3030 patients of Han Chinese ethnicity randomly received APD (aripiprazole, olanzapine, quetiapine, risperidone, ziprasidone, haloperidol and perphenazine) treatment for six weeks. This study is a secondary data analysis. Percentage change on the Positive and Negative Syndrome Scale (PANSS) reduction was used to assess APD efficacy, and more than 50% change was considered as APD response. Associations between CNV burden, gene set, CNV loci and CNV break-point and APD efficacy were analysed. FINDINGS: Higher CNV losses burden decreased the odds of 6-week APD response (OR = 0.66 [0.44, 0.98]). CNV losses in synaptic pathway involved in neurotransmitters were associated with 2-week PANSS reduction rate. CNV involved in sialylation (1p31.1 losses) and cellular metabolism (19q13.32 gains) associated with 6-week PANSS reduction rate at genome-wide significant level. Additional 36 CNVs associated with PANSS factors improvement. The OR of protective CNVs for 6-week APD response was 3.10 (95% CI: 1.33-7.19) and risk CNVs was 8.47 (95% CI: 1.92-37.43). CNV interacted with genetic risk score on APD efficacy (Beta = -1.53, SE = 0.66, P = 0.021). The area under curve to differ 6-week APD response attained 80.45% (95% CI: 78.07%-82.82%). INTERPRETATION: Copy number variants contributed to poor APD efficacy and synaptic pathway involved in neurotransmitter was highlighted. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, China Postdoctoral Science Foundation.

5.
medRxiv ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38234828

RESUMO

Polygenic scores (PGS) are promising in stratifying individuals based on the genetic susceptibility to complex diseases or traits. However, the accuracy of PGS models, typically trained in European- or East Asian-ancestry populations, tend to perform poorly in other ethnic minority populations, and their accuracies have not been evaluated for Native Hawaiians. Using body mass index, height, and type-2 diabetes as examples of highly polygenic traits, we evaluated the prediction accuracies of PGS models in a large Native Hawaiian sample from the Multiethnic Cohort with up to 5,300 individuals. We evaluated both publicly available PGS models or genome-wide PGS models trained in this study using the largest available GWAS. We found evidence of lowered prediction accuracies for the PGS models in some cases, particularly for height. We also found that using the Native Hawaiian samples as an optimization cohort during training did not consistently improve PGS performance. Moreover, even the best performing PGS models among Native Hawaiians would have lowered prediction accuracy among the subset of individuals most enriched with Polynesian ancestry. Our findings indicate that factors such as admixture histories, sample size and diversity in GWAS can influence PGS performance for complex traits among Native Hawaiian samples. This study provides an initial survey of PGS performance among Native Hawaiians and exposes the current gaps and challenges associated with improving polygenic prediction models for underrepresented minority populations.

6.
Cell Genom ; 3(12): 100436, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116116

RESUMO

Genome-wide association studies (GWASs) have identified tens of thousands of genetic loci associated with human complex traits. However, the majority of GWASs were conducted in individuals of European ancestries. Failure to capture global genetic diversity has limited genomic discovery and has impeded equitable delivery of genomic knowledge to diverse populations. Here we report findings from 102,900 individuals across 36 human quantitative traits in the Taiwan Biobank (TWB), a major biobank effort that broadens the population diversity of genetic studies in East Asia. We identified 968 novel genetic loci, pinpointed novel causal variants through statistical fine-mapping, compared the genetic architecture across TWB, Biobank Japan, and UK Biobank, and evaluated the utility of cross-phenotype, cross-population polygenic risk scores in disease risk prediction. These results demonstrated the potential to advance discovery through diversifying GWAS populations and provided insights into the common genetic basis of human complex traits in East Asia.

7.
medRxiv ; 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711496

RESUMO

Genome-wide association studies (GWAS) of human complex traits or diseases often implicate genetic loci that span hundreds or thousands of genetic variants, many of which have similar statistical significance. While statistical fine-mapping in individuals of European ancestries has made important discoveries, cross-population fine-mapping has the potential to improve power and resolution by capitalizing on the genomic diversity across ancestries. Here we present SuSiEx, an accurate and computationally efficient method for cross-population fine-mapping, which builds on the single-population fine-mapping framework, Sum of Single Effects (SuSiE). SuSiEx integrates data from an arbitrary number of ancestries, explicitly models population-specific allele frequencies and LD patterns, accounts for multiple causal variants in a genomic region, and can be applied to GWAS summary statistics. We comprehensively evaluated SuSiEx using simulations, a range of quantitative traits measured in both UK Biobank and Taiwan Biobank, and schizophrenia GWAS across East Asian and European ancestries. In all evaluations, SuSiEx fine-mapped more association signals, produced smaller credible sets and higher posterior inclusion probability (PIP) for putative causal variants, and captured population-specific causal variants.

8.
Appl Microbiol Biotechnol ; 93(2): 881-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22139042

RESUMO

Clostridium tyrobutyricum ATCC 25755 can produce butyric acid, acetic acid, and hydrogen as the main products from various carbon sources. In this study, C. tyrobutyricum was used as a host to produce n-butanol by expressing adhE2 gene under the control of a native thiolase promoter using four different conjugative plasmids (pMTL82151, 83151, 84151, and 85151) each with a different replicon (pBP1 from C. botulinum NCTC2916, pCB102 from C. butyricum, pCD6 from Clostridium difficile, and pIM13 from Bacillus subtilis). The effects of different replicons on transformation efficiency, plasmid stability, adhE2 expression and aldehyde/alcohol dehydrogenase activities, and butanol production by different mutants of C. tyrobutyricum were investigated. Among the four plasmids and replicons studied, pMTL82151 with pBP1 gave the highest transformation efficiency, plasmid stability, gene expression, and butanol biosynthesis. Butanol production from various substrates, including glucose, xylose, mannose, and mannitol were then investigated with the best mutant strain harboring adhE2 in pMTL82151. A high butanol titer of 20.5 g/L with 0.33 g/g yield and 0.32 g/L h productivity was obtained with mannitol as the substrate in batch fermentation with pH controlled at ~6.0.


Assuntos
1-Butanol/metabolismo , Vias Biossintéticas/genética , Clostridium tyrobutyricum/metabolismo , Expressão Gênica , Instabilidade Genômica , Plasmídeos , Transformação Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Clostridium tyrobutyricum/genética , Conjugação Genética , Engenharia Metabólica , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Replicon
9.
Metab Eng ; 13(4): 373-82, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21530675

RESUMO

Clostridium tyrobutyricum ATCC 25755, a butyric acid producing bacterium, has been engineered to overexpress aldehyde/alcohol dehydrogenase 2 (adhE2, Genebank no. AF321779) from Clostridium acetobutylicum ATCC 824, which converts butyryl-CoA to butanol, under the control of native thiolase (thl) promoter. Butanol titer of 1.1g/L was obtained in C. tyrobutyricum overexpressing adhE2. The effects of inactivating acetate kinase (ack) and phosphotransbutyrylase (ptb) genes in the host on butanol production were then studied. A high C4/C2 product ratio of 10.6 (mol/mol) was obtained in ack knockout mutant, whereas a low C4/C2 product ratio of 1.4 (mol/mol) was obtained in ptb knockout mutant, confirming that ack and ptb genes play important roles in controlling metabolic flux distribution in C. tyrobutyricum. The highest butanol titer of 10.0g/L and butanol yield of 27.0% (w/w, 66% of theoretical yield) were achieved from glucose in the ack knockout mutant overexpressing adhE2. When a more reduced substrate mannitol was used, the butanol titer reached 16.0 g/L with 30.6% (w/w) yield (75% theoretical yield). Moreover, C. tyrobutyricum showed good butanol tolerance, with >80% and ∼60% relative growth rate at 1.0% and 1.5% (v/v) butanol. These results suggest that C. tyrobutyricum is a promising heterologous host for n-butanol production from renewable biomass.


Assuntos
1-Butanol/metabolismo , Clostridium tyrobutyricum , Organismos Geneticamente Modificados , Acetato Quinase/biossíntese , Acetato Quinase/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Clostridium tyrobutyricum/enzimologia , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/crescimento & desenvolvimento , Expressão Gênica , Técnicas de Silenciamento de Genes , Manitol/metabolismo , Manitol/farmacologia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Organismos Geneticamente Modificados/metabolismo , Oxirredutases/biossíntese , Oxirredutases/genética , Fosfato Acetiltransferase/biossíntese , Fosfato Acetiltransferase/genética , Edulcorantes/metabolismo , Edulcorantes/farmacologia
10.
Biotechnol Bioeng ; 108(12): 2853-64, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21732326

RESUMO

Carbonic anhydrase (CA) has recently gained renewed interests for its potential as a mass-transfer facilitator for CO(2) sequestration. However, the low stability and high price severely limit its applications. In this work, the expression of α-CA from Helicobacter pylori on the outer membrane of Escherichia coli using a surface-anchoring system derived from ice nucleation protein (INP) from Pseudomonas syringae was developed. To find the best surface anchoring motif, full-length INP (114 kDa), truncated INP (INP-NC, 33 kDa), and INP's N-domain with first two subunits (INP-N, 22 kDa) were evaluated. Two vectors, pKK223-3 and pET22b(+), with different promoters (T7 and Tac) were used to construct the fusion genes, and for each vector, three recombinant strains, each expressing a different length of the fusion protein, were obtained. SDS-PAGE, Western blot, immunofluorescence microscopy, FACS, and whole-cell ELISA confirmed the expression of fusion proteins on the surface of E. coli. The smallest fusion protein with INP-N as the anchoring motif had the highest expression level and CA activity, suggesting that INP-N is the best carrying protein due to its smaller size. Also, the T7 promoter in pET22b(+) induced with 0.2 mM IPTG gave high protein expression levels, whereas the Tac promoter in pKK223-3 gave low expression levels. The surface displayed CA was at least twofold more stable than that of the free form, and did not show any adverse effect on cell growth and outer membrane integrity. Cells with surface displayed CA were successfully used to facilitate CO(2) sequestration in contained liquid membrane (CLM).


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Escherichia coli/enzimologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Western Blotting , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Citometria de Fluxo , Expressão Gênica , Vetores Genéticos , Helicobacter pylori/enzimologia , Helicobacter pylori/genética , Microscopia de Fluorescência , Peso Molecular , Plasmídeos , Regiões Promotoras Genéticas , Pseudomonas syringae/enzimologia , Pseudomonas syringae/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência
11.
Bioresour Technol ; 243: 1000-1008, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28747008

RESUMO

Clostridium beijerinckii CC101 was engineered to overexpress aldehyde/alcohol dehydrogenase (adhE2) and CoA-transferase (ctfAB). Solvent production and acid assimilation were compared between the parental and engineered strains expressing only adhE2 (CC101-SV4) and expressing adhE2, ald and ctfAB (CC101-SV6). CC101-SV4 showed an early butanol production from glucose but stopped pre-maturely at a low butanol concentration of ∼6g/L. Compared to CC101, CC101-SV6 produced more butanol (∼12g/L) from glucose and was able to re-assimilate more acids, which prevented "acid crash" and increased butanol production, under all conditions studied. CC101-SV6 also showed better ability in using glucose and xylose present in sugarcane bagasse hydrolysate, and produced 9.4g/L solvents (acetone, butanol and ethanol) compared to only 2.6g/L by CC101, confirming its robustness and better tolerance to hydrolysate inhibitors. The engineered strain of C. beijerinckii overexpressing adhE2 and ctfAB should have good potential for producing butanol from lignocellulosic biomass hydrolysates.


Assuntos
Acetona , Etanol , Fermentação , Butanóis , Clostridium , Clostridium beijerinckii
12.
Biotechnol Prog ; 28(1): 52-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22038864

RESUMO

Clostridium tyrobutyricum ATCC 25755 is an anaerobic, rod-shaped, gram-positive bacterium that produces butyrate, acetate, hydrogen, and carbon dioxide from various saccharides, including glucose and xylose. Phosphotransbutyrylase (PTB) is a key enzyme in the butyric acid synthesis pathway. In this work, effects of ptb knockout by homologous recombination on metabolic flux and product distribution were investigated. When compared with the wild type, the activities of PTB and butyrate kinase in ptb knockout mutant decreased 76 and 42%, respectively; meanwhile, phosphotransacetylase and acetate kinase increased 7 and 29%, respectively. However, ptb knockout did not significantly reduce butyric acid production from glucose or xylose in batch fermentations. Instead, it increased acetic acid and hydrogen production 33.3-53.8% and ≈ 11%, respectively. Thus, the ptb knockout did increase the carbon flux toward acetate synthesis, resulting in a significant decrease (28-35% reduction) in the butyrate/acetate ratio in ptb mutant fermentations. In addition, the mutant displayed a higher specific growth rate (0.20 h(-1) vs. 0.15 h(-1) on glucose and 0.14 h(-1) vs. 0.10 h(-1) on xylose) and tolerance to butyric acid. Consequently, batch fermentation with the mutant gave higher fermentation rate and productivities (26-48% increase for butyrate, 81-100% increase for acetate, and 38-46% increase for hydrogen). This mutant thus can be used more efficiently than the parental strain in fermentations to produce butyrate, acetate, and hydrogen from glucose and xylose.


Assuntos
Ácido Butírico/metabolismo , Clostridium tyrobutyricum/enzimologia , Clostridium tyrobutyricum/genética , Fermentação , Fosfato Acetiltransferase/metabolismo , Acetato Quinase/metabolismo , Ácido Acético/metabolismo , Reatores Biológicos/microbiologia , Clostridium tyrobutyricum/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Glucose/metabolismo , Recombinação Homóloga , Hidrogênio/metabolismo , Fosfato Acetiltransferase/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Xilose/metabolismo
13.
Protein Expr Purif ; 53(2): 255-63, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17321147

RESUMO

The extracellular lipase gene from Yarrowia lipolytica (YlLip2) was cloned into the pPICZalphaA and integrated into the genome of the methylotrophic yeast Pichia pastoris X-33. The lipase was successfully expressed and secreted with an apparent molecular weight of 39kDa using Saccharomyces cerevisiae secretion signal peptide (alpha-factor) under the control of the methanol inducible promoter of the alcohol oxidase 1 gene (AOX1). The lipase activity of 12,500,000U/l (2.10g total protein and 0.63g lipase per liter) was obtained in a fed-batch cultivation, where methanol feeding was linked to the dissolved oxygen content after initial glycerol culture. After fermentation, the supernatant was concentrated by ultrafiltration with a 10kDa cut off membrane and purified with ion exchange chromatography using Q Sepharose FF. Deglycosylation showed that the recombinant lipase is a glycoprotein which contains the same content of sugar (about 12%) as the native lipase from Y. lipolytica. The optimum temperature and pH of the recombinant lipase was 40 degrees C and 8.0, respectively. The lipase showed high activity toward long-chain fatty acid methyl esters (C12-C16).


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Lipase/genética , Lipase/isolamento & purificação , Yarrowia/enzimologia , Yarrowia/genética , Reatores Biológicos , Clonagem Molecular , Proteínas Fúngicas/metabolismo , Expressão Gênica , Genes Fúngicos , Vetores Genéticos , Concentração de Íons de Hidrogênio , Cinética , Lipase/metabolismo , Filogenia , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA