Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960428

RESUMO

As a major coastal economic province in the east of China, it is of great significance to clarify the temporal and spatial patterns of regional development in Shandong Province in recent years to support regional high-quality development. Nightlight remote sensing data can reveal the spatio-temporal patterns of social and economic activities on a fine pixel scale. We based the nighttime light patterns at three spatial scales in three geographical regions on monthly nighttime light remote sensing data and social statistics. Different cities and different counties in Shandong Province in the last 10 years were studied by using the methods of trend analysis, stability analysis and correlation analysis. The results show that: (1) The nighttime light pattern was generally consistent with the spatial pattern of construction land. The nighttime light intensity of most urban, built-up areas showed an increasing trend, while the old urban areas of Qingdao and Yantai showed a weakening trend. (2) At the geographical unit scale, the total nighttime light in south-central Shandong was significantly higher than that in eastern and northwest Shandong, while the nighttime light growth rate in northwest Shandong was significantly highest. At the urban scale, Liaocheng had the highest nighttime light growth rate. At the county scale, the nighttime light growth rate of counties with a better economy was lower, while that of counties with a backward economy was higher. (3) The nighttime light growth was significantly correlated with Gross Domestic Product (GDP) and population growth, indicating that regional economic development and population growth were the main causes of nighttime light change.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 1980-5, 2015 Jul.
Artigo em Zh | MEDLINE | ID: mdl-26717763

RESUMO

Canopy is a major structural layer for vegetation to carry out ecological activities. The differences of light radiative transfer processes in canopies caused by forest canopy structure directly influence remote sensing inversion of forest canopy biochemical composition. Thus an analysis of spectral characteristics between different canopy structures contributes to improve the accuracy of remote sensing inversion of forest canopy biochemical components. Based on a Hyperion hyperspectral image in the north Slope of Changbai Mountain Nature Reserve, through FLAASH (the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) atmospheric correction, different canopy reflectance spectra were extracted, and spectral transforms were carried out using continuum removal method and first derivative method for quantitative analysis of the spectral characteristics. A set of spectral indices were calculated, including NIR (near infrared reflectance), NDVI (normalized difference vegetation index), EVI (Enhanced Vegetation Index), NDNI (normalized difference nitrogen index), SPRI (normalized photochemical reflectance index) * NDVI and SPRI * EVI (vegetation productivity index). Combined with the broad foliar dominance index (BFDI), the relationships between the spectral indices and canopy structure composition were investigated. The characteristics of canopy structure composition impacting its spectral curve and indices were clarified in the temperate forest. The results showed that: (1) there existed significantly different spectral characteristics between different canopy structures: comparing to the spectrum of broad-leaved forest canopies, the red edge moved to the left and their slope decreased, blue edge and yellow edge features were also weakened, near-infrared reflectance decreased, normalized reflectance in visible region risen for the spectrum of conifer forest canopies; (2) the spectrum variation were controlled by BFDL The correlations between BFDI and the spectral indices were significant (P < 0.01). It was suggested the ratio of broad-leaved and conifer in canopy played an important role in variation of spectral indices. The coefficients of determination (R2) of BFDI and NDVI, EVI, SPRI * EVI, SPRI * NDVI and NDNI were 0.90, 0.83, 0.83, 0.81, 0.68 and 0.59 respectively. It was revealed that BFDI could control the variation of the canopy structure, greenness, leaf nitrogen concentration, leaf area index and productivity in temperate coniferous and broad-leaved mixed forests. Our findings were very significant foundation for accurate determination of forest type, quantitative extraction of canopy biochemical components, estimation of regional forest ecosystem productivity and other related researches.


Assuntos
Florestas , Folhas de Planta , Análise Espectral , China , Luz , Tecnologia de Sensoriamento Remoto , Traqueófitas
3.
Heliyon ; 9(8): e18454, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520971

RESUMO

Polarization is one of the fundamental properties of light, which has a wide range of applications and is developing rapidly. To meet the needs of polarization detection, different types of polarization instruments came into being. The precision of the polarization detection instruments is vital to the result analysis. In this paper, a full polarization imager is designed, and the radiometric calibration and polarization calibration of this instrument are studied. In radiometric calibration, the different numbers lights are set to verify the light intensity response of the imager. The mathematical model was constructed for numerical fitting, and the correlation between the fitted values and the measured values in the 490 nm, 550 nm, and 670 nm bands was above 0.99. Fixed the radiance of the integrating sphere, and adjusted exposure times. The correlation of the three bands is above 0.99, which verifies that the radiative stability of the imager is good. The polarimetric calibration system adopts the adjustable degree of polarization reference light source (APOL). The theoretical and measured values of the degree of polarization of reference light sources in three different bands are analyzed. The results show that the measurement accuracy of the 490 nm band is less than 2%. The precision of polarization measurement in the 550 nm band is less than 1.5%, and the precision of polarization calibration in the 670 nm band is less than 1%. The imager is verified to have high polarization calibration accuracy and meets the requirements of high-precision polarization detection.

4.
Sci Rep ; 5: 18254, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26666469

RESUMO

The mechanism underlying the effect of drought on the photosynthetic traits of leaves in forest ecosystems in subtropical regions is unclear. In this study, three limiting processes (stomatal, mesophyll and biochemical limitations) that control the photosynthetic capacity and three resource use efficiencies (intrinsic water use efficiency (iWUE), nitrogen use efficiency (NUE) and light use efficiency (LUE)), which were characterized as the interactions between photosynthesis and environmental resources, were estimated in two species (Schima superba and Pinus massoniana) under drought conditions. A quantitative limitation analysis demonstrated that the drought-induced limitation of photosynthesis in Schima superba was primarily due to stomatal limitation, whereas for Pinus massoniana, both stomatal and non-stomatal limitations generally exhibited similar magnitudes. Although the mesophyll limitation represented only 1% of the total limitation in Schima superba, it accounted for 24% of the total limitations for Pinus massoniana. Furthermore, a positive relationship between the LUE and NUE and a marginally negative relationship or trade-off between the NUE and iWUE were observed in the control plots. However, drought disrupted the relationships between the resource use efficiencies. Our findings may have important implications for reducing the uncertainties in model simulations and advancing the understanding of the interactions between ecosystem functions and climate change.


Assuntos
Secas , Ecossistema , Florestas , Fotossíntese , Clima Tropical , Carbono , Dióxido de Carbono , China , Folhas de Planta , Solo , Água
5.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3421-32, 2015 Nov.
Artigo em Zh | MEDLINE | ID: mdl-26915199

RESUMO

The photochemical reflectance index (PRI) calculated from spectral reflectance has universally become a proxy for the light-use efficiency (LUE), which significantly improves the LUE-based estimation of ecosystem gross primary productivity on a large scale through upscaling. In this study, we observed the vegetation spectral reflectance of a planted subtropical coniferous forest from the top of a flux tower at Qianyanzhou Station, one of the ChinaFLUX sites, in September and December 2013, and simultaneously measured CO2 flux and meteorological variables for correlation and regression analysis. Results showed that PRI had a better correlation with LUE (R2 = 0.20, P< 0.001) than that of normalized difference vegetation index (NDVI), i.e., PRI was preferred in LUE retrieval. During the whole observation period, PRI and soil water content (SWC)-based bivariate regression model correlated well with LUE (R2 = 0.29, P < 0.001 and R2 = 0.30, P < 0.01 for daytime and midday observation, respectively), but in autumn the bivariate regression model of PRI and vapor pressure deficit (VPD) had a higher correlation with LUE (R2 = 0.448, P < 0.001) for midday observation, which showed that environmental factors, i.e., SWC and VPD, had a potential in improving the LUE retrieval from PRI, but the choice of appropriate environmental factors depended on season.


Assuntos
Florestas , Luz Solar , Traqueófitas/efeitos da radiação , China , Estações do Ano , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA