Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Am Chem Soc ; 144(22): 9695-9706, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622083

RESUMO

Selective methane oxidation is difficult chemistry. Here we describe a strategy for the electrocatalysis of selective methane oxidation by immobilizing tricopper catalysts on the cathodic surface. In the presence of dioxygen and methane, the activation of these catalysts above a threshold cathodic potential can initiate the dioxygen chemistry for O atom transfer to methane. The catalytic turnover is completed by facile electron injections into the tricopper catalysts from the electrode. This technology leads to dramatic enhancements in performance of the catalysts toward methane oxidation. Unprecedented turnover frequencies (>40 min-1) and high product throughputs (turnover numbers >30 000 in 12 h) are achieved for this challenging chemical transformation in water under ambient conditions. The technology is green and suitable for on-site direct conversion of methane into methanol.


Assuntos
Metano , Oxigenases , Catálise , Oxirredução , Oxigênio , Oxigenases/metabolismo
2.
J Am Chem Soc ; 143(9): 3359-3372, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629832

RESUMO

The active site of methanol dehydrogenase (MDH) contains a rare disulfide bridge between adjacent cysteine residues. As a vicinal disulfide, the structure is highly strained, suggesting it might work together with the pyrroloquinoline quinone (PQQ) prosthetic group and the Ca2+ ion in the catalytic turnover during methanol (CH3OH) oxidation. We purify MDH from Methylococcus capsulatus (Bath) with the disulfide bridge broken into two thiols. Spectroscopic and high-resolution X-ray crystallographic studies of this form of MDH indicate that the disulfide bridge is redox active. We observe an internal redox process within the holo-MDH that produces a disulfide radical anion concomitant with a companion PQQ radical, as evidenced by an optical absorption at 408 nm and a magnetically dipolar-coupled biradical in the EPR spectrum. These observations are corroborated by electron-density changes between the two cysteine sulfurs of the disulfide bridge as well as between the bound Ca2+ ion and the O5-C5 bond of the PQQ in the high-resolution X-ray structure. On the basis of these findings, we propose a mechanism for the controlled redistribution of the two electrons during hydride transfer from the CH3OH in the alcohol oxidation without formation of the reduced PQQ ethenediol, a biradical mechanism that allows for possible recovery of the hydride for transfer to an external NAD+ oxidant in the regeneration of the PQQ cofactor for multiple catalytic turnovers. In support of this mechanism, a steady-state level of the disulfide radical anion is observed during turnover of the MDH in the presence of CH3OH and NAD+.

3.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946512

RESUMO

For decades, high-resolution 1H NMR spectroscopy has been routinely utilized to analyze both naturally occurring steroid hormones and synthetic steroids, which play important roles in regulating physiological functions in humans. Because the 1H signals are inevitably superimposed and entangled with various JH-H splitting patterns, such that the individual 1H chemical shift and associated JH-H coupling identities are hardly resolved. Given this, applications of thess information for elucidating steroidal molecular structures and steroid/ligand interactions at the atomic level were largely restricted. To overcome, we devoted to unraveling the entangled JH-H splitting patterns of two similar steroidal compounds having fully unsaturated protons, i.e., androstanolone and epiandrosterone (denoted as 1 and 2, respectively), in which only hydroxyl and ketone substituents attached to C3 and C17 were interchanged. Here we demonstrated that the JH-H values deduced from 1 and 2 are universal and applicable to other steroids, such as testosterone, 3ß, 21-dihydroxygregna-5-en-20-one, prednisolone, and estradiol. On the other hand, the 1H chemical shifts may deviate substantially from sample to sample. In this communication, we propose a simple but novel scheme for resolving the complicate JH-H splitting patterns and 1H chemical shifts, aiming for steroidal structure determinations.


Assuntos
Espectroscopia de Ressonância Magnética , Acoplamento Oxidativo , Esteroides/química , Modelos Biológicos , Conformação Molecular , Estrutura Molecular
4.
Chem Rev ; 117(13): 8574-8621, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28206744

RESUMO

Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.


Assuntos
Alcanos/metabolismo , Materiais Biomiméticos , Oxigenases/metabolismo , Animais , Bactérias/enzimologia , Bactérias/metabolismo , Materiais Biomiméticos/química , Oxirredução , Oxigenases/química , Termodinâmica
5.
Angew Chem Int Ed Engl ; 57(14): 3612-3616, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29392815

RESUMO

A study of the oxygen reduction reaction (ORR) on a screen printed carbon electrode surface mediated by the tricopper cluster complex Cu3 (7-N-Etppz(CH2 OH)) dispersed on electrochemically reduced carbon black, where 7-N-Etppz(CH2 OH) is the ligand 3,3'-(6-(hydroxymethyl)-1,4-diazepane-1,4-diyl)bis(1-(4-ethyl piperazin-1-yl)propan-2-ol), is described. Onset oxygen reduction potentials of about 0.92 V and about 0.77 V are observed at pH 13 and pH 7 vs. the reversible hydrogen electrode, which are comparable to the best values reported for any synthetic copper complex. Based on half-wave potentials (E1/2 ), the corresponding overpotentials are about 0.42 V and about 0.68 V, respectively. Kinetic studies indicate that the trinuclear copper catalyst can accomplish the 4 e- reduction of O2 efficiently and the ORR is accompanied by the production of only small amounts of H2 O2 . The involvement of the copper triad in the O2 activation process is also verified.

6.
Chemistry ; 23(11): 2571-2582, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-27798822

RESUMO

Engineered bacterial cytochrome P450s are noted for their ability in the oxidation of inert small alkanes. Cytochrome P450 BM3 L188P A328F (BM3 PF) and A74E L188P A328F (BM3 EPF) variants are able to efficiently oxidize n-butane to 2-butanol. Esterification of the 2-butanol derived from this reaction mediated by the aforementioned two mutants gives diastereomeric excesses (de) of -56±1 and -52±1 %, respectively, with the preference for the oxidation occurring at the C-HS bond. When tailored (2R,3R)- and (2S,3S)-[2-2 H1 ,3-2 H1 ]butane probes are employed as substrates for both variants, the obtained de values from (2R,3R)-[2-2 H1 ,3-2 H1 ]butane are -93 and -92 % for BM3 PF and EPF, respectively; whereas the obtained de values from (2S,3S)-[2-2 H1 ,3-2 H1 ]butane are 52 and 56 % in the BM3 PF and EPF systems, respectively. The kinetic isotope effects (KIEs) for the oxidation of (2R,3R)-[2-2 H1 ,3-2 H1 ]butane are 7.3 and 7.8 in BM3 PF and EPF, respectively; whereas KIEs for (2S,3S)-[2-2 H1 ,3-2 H1 ]butanes are 18 and 25 in BM3 PF and EPF, respectively. The discrepancy in KIEs obtained from the two substrates supports the two-state reactivity (TSR) that is proposed for alkane oxidation in cytochrome P450 systems. Moreover, for the first time, experimental evidence for tunneling in the oxidation mediated by P450 is given through the oxidation of the C-HR bond in (2S,3S)-[2-2 H1 ,3-2 H1 ]butane.


Assuntos
Proteínas de Bactérias/metabolismo , Butanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Butanos/química , Butanóis/análise , Butanóis/química , Butanóis/metabolismo , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hidroxilação , Cinética , Mutagênese Sítio-Dirigida , Oxirredução , Estereoisomerismo , Especificidade por Substrato , Termodinâmica
7.
Biochim Biophys Acta ; 1854(12): 1842-1852, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26275807

RESUMO

Acetylene (HCCH) has a long history as a mechanism-based enzyme inhibitor and is considered an active-site probe of the particulate methane monooxygenase (pMMO). Here, we report how HCCH inactivates pMMO in Methylococcus capsulatus (Bath) by using high-resolution mass spectrometry and computational simulation. High-resolution MALDI-TOF MS of intact pMMO complexes has allowed us to confirm that the enzyme oxidizes HCCH to the ketene (C2H2O) intermediate, which then forms an acetylation adduct with the transmembrane PmoC subunit. LC-MS/MS analysis of the peptides derived from in-gel proteolytic digestion of the protein subunit identifies K196 of PmoC as the site of acetylation. No evidence is obtained for chemical modification of the PmoA or PmoB subunit. The inactivation of pMMO by a single adduct in the transmembrane PmoC domain is intriguing given the complexity of the structural fold of this large membrane-protein complex as well as the complicated roles played by the various metal cofactors in the enzyme catalysis. Computational studies suggest that the entry of hydrophobic substrates to, and migration of products from, the catalytic site of pMMO are controlled tightly within the transmembrane domain. Support of these conclusions is provided by parallel experiments with two related alkynes: propyne (CH3CCH) and trifluoropropyne (CF3CCH). Finally, we discuss the implication of these findings to the location of the catalytic site in pMMO.


Assuntos
Acetileno/metabolismo , Methylococcus capsulatus/metabolismo , Oxigenases/metabolismo , Cromatografia Líquida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
8.
J Biol Chem ; 289(10): 6639-6655, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24451374

RESUMO

The vaccinia viral protein A27 in mature viruses specifically interacts with heparan sulfate for cell surface attachment. In addition, A27 associates with the viral membrane protein A17 to anchor to the viral membrane; however, the specific interaction between A27 and A17 remains largely unclear. To uncover the active binding sites and the underlying binding mechanism, we expressed and purified the N-terminal (18-50 residues) and C-terminal (162-203 residues) fragments of A17, which are denoted A17-N and A17-C. Through surface plasmon resonance, the binding affinity of A27/A17-N (KA = 3.40 × 10(8) m(-1)) was determined to be approximately 3 orders of magnitude stronger than that of A27/A17-C (KA = 3.40 × 10(5) m(-1)), indicating that A27 prefers to interact with A17-N rather than A17-C. Despite the disordered nature of A17-N, the A27-A17 interaction is mediated by a specific and cooperative binding mechanism that includes two active binding sites, namely (32)SFMPK(36) (denoted as F1 binding) and (20)LDKDLFTEEQ(29) (F2). Further analysis showed that F1 has stronger binding affinity and is more resistant to acidic conditions than is F2. Furthermore, A27 mutant proteins that retained partial activity to interact with the F1 and F2 sites of the A17 protein were packaged into mature virus particles at a reduced level, demonstrating that the F1/F2 interaction plays a critical role in vivo. Using these results in combination with site-directed mutagenesis data, we established a computer model to explain the specific A27-A17 binding mechanism.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Vírion/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Simulação por Computador , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Vírion/química , Vírion/genética
9.
Anal Chem ; 85(14): 6748-55, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23763332

RESUMO

We have developed a novel streamlined sample preparation procedure for mass spectrometric (MS) analysis of membrane proteins using surface-oxidized nanodiamond particles. The platform consists of solid-phase extraction and elution of the membrane proteins on nanodiamonds, concentrating the membrane proteins on the nanodiamonds and separating out detergents, chaotropic agents, and salts, and other impurities that are often present at high concentrations in solubilized membrane preparations. In this manner, membrane-protein extracts are transformed into MS-ready samples in minutes. The protocol is not only fast, but also widely adaptable and highly effective for preparing generic membrane protein samples for both MALDI-MS studies of membrane-protein complexes and shotgun membrane proteomics studies. As proof of concept, we have demonstrated substantial improvements in the MALDI-MS analysis of the particulate methane monooxygenase (pMMO) complex, a three-subunit transmembrane protein solubilized in various detergent buffers. Enzymatic digestions of membrane proteins are also greatly facilitated since the proteins extracted on to the nanodiamonds are exposed on the surface of the nanoparticles rather than in SDS gels or in detergent solutions. We illustrate the effectiveness of nanodiamonds for SDS removal in the preparation of membrane proteins for MS analysis on the proteome level by examining the quality of the tryptic peptides prepared by on-surface nanodiamond digestion of an E. coli membrane fraction for shotgun proteomics.


Assuntos
Proteínas de Membrana/análise , Nanodiamantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Nanopartículas/química , Fatores de Tempo
10.
Biochem Biophys Res Commun ; 440(4): 671-6, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24103751

RESUMO

Zebrafish Δ-5/Δ-6 fatty acid desaturase (Z-FADS) catalyzes the cascade synthesis of long-chain polyunsaturated fatty acids (PUFAs), thereby playing a pivotal role in several biological processes. In the current study, we report that the Z-FADS protein exists in close proximity to certain cytochrome b5 reductases (CYB5R2 and 3) and elongases (ELOVL2, 4, 5 and 7) on the endoplasmic reticulum, as determined using fluorescence microscopy and fluorescence resonance energy transfer. HeLa cells co-transfected with zebrafish fads and elovl2, 4, and 5 produced docosahexaenoic acid (DHA), as detected by gas chromatography. In addition, immunofluorescence cytochemistry and Western blot data revealed that Z-FADS is present in the mitochondria of HeLa cells. Collectively, our results implicate that Z-FADS, the sole fatty acid desaturase ever been identified in zebrafish, can serve as a universal fatty acid desaturase during lipogenesis.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Linoleoil-CoA Desaturase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Células HeLa , Humanos , Linoleoil-CoA Desaturase/genética
11.
Chemistry ; 19(41): 13680-91, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24092541

RESUMO

We demonstrate herein that wild-type cytochrome P450 BM3 can recognize non-natural substrates, such as fluorinated C12 -C15 chain-length fatty acids, and show better catalysis for their efficient conversion. Although the binding affinities for fluorinated substrates in the P450 BM3 pocket are marginally lower than those for non-fluorinated substrates, spin-shift measurements suggest that fluoro substituents at the ω-position can facilitate rearrangement of the dynamic structure of the bulk-water network within the hydrophobic pocket through a micro desolvation process to expel the water ligand of the heme iron that is present in the resting state. A lowering of the Michaelis-Menten constant (Km ), however, indicates that fluorinated fatty acids are indeed better substrates compared with their non-fluorinated counterparts. An enhancement of the turnover frequencies (kcat ) for electron transfer from NADPH to the heme iron and for CH bond oxidation by compound I (Cpd I) to yield the product suggests that the activation energies associated with going from the enzyme-substrate (ES state) to the corresponding transition state (ES(≠) state) are significantly lowered for both steps in the case of the fluorinated substrates. Delicate control of the regioselectivity by the fluorinated terminal methyl groups of the C12 -C15 fatty acids has been noted. Despite the fact that residues Arg47/Tyr51/Ser72 exert significant control over the hydroxylation of the subterminal carbon atoms toward the hydrocarbon tail, the fluorine substituent(s) at the ω-position affects the regioselective hydroxylation. For substrate hydroxylation, we have found that fluorinated lauric acids probably give a better structural fit for the heme pocket than fluorinated pentadecanoic acid, even though pentadecanoic acid is by far the best substrate among the reported fatty acids. Interestingly, 12-fluorododecanoic acid, with only one fluorine atom at the terminal methyl group, exhibits a comparable turnover frequency to that of pentadecanoic acid. Thus, fluorination of the terminal methyl group introduces additional interactions of the substrate within the hydrophobic pocket, which influence the electron transfers for both dioxygen activation and the controlled oxidation of aliphatics mediated by high-valent oxoferryl species.


Assuntos
Ácidos Graxos/química , Ácidos Láuricos/química , Sistema Enzimático do Citocromo P-450 , Fluorocarbonos , Halogenação , Ligação de Hidrogênio , Hidroxilação , Oxirredução
12.
Chemistry ; 18(9): 2565-77, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22266921

RESUMO

X-ray absorption, circular dichroism, and EPR spectroscopy were employed to investigate the metal-core structures in the Escherichia coli transcriptional factor SoxR under reduced, oxidized, and nitrosylated conditions. The spectroscopic data revealed that the coordination environments of the metal active centers varied only very slightly between the reduced and oxidized states, similar to most other proteins containing iron-sulfur clusters. Upon nitrosylation of oxidized SoxR, however, we observed a low-temperature EPR spectrum characteristic of a protein dinitrosyl iron complex (DNIC), with an intensity corresponding to about two DNICs per iron sulfur cluster in the protein, according to spin quantification relative to a low-molecular-weight DNIC standard. In addition, there was no evidence for dichroic spectral features in the responsive region of the nitrosyl iron complexes, as well as for Fe-Fe back-scattering in the fitting of the Fe extended X-ray absorption fine structure (EXAFS) spectrum. Instead the Fe EXAFS spectrum of the nitrosylated SoxR core exhibited the same first- and second-shell coordination environments characteristic of modeled small molecular DNICs, indicating that each of the [2 Fe-2 S] cores in the homodimeric SoxR was dissociated into two individual DNICs. Similar nitrosylation of the reduced mixed-valence SoxR for 1 min led to degradation of the iron-sulfur clusters to give several iron species, including one with EPR signals characteristic of a reduced Roussin's red ester (rRRE), a diamagnetic species, presumably Roussin's red ester (RRE), and a small amount of DNIC. We also undertook in vivo time-course studies of E. coli cells containing recombinant SoxR after rapid purging of the cells with exogenous NO gas. Rapid freeze-quenched EPR experiments demonstrated rapid formation of the SoxR rRRE species, followed by fast breakup of this precursor intermediate to form the stable protein-bound DNIC species. Accordingly, under nitrosative stress, we believe that the response of SoxR to NO could depend on the intracellular redox state of E. coli, the central modulator of which could be exploited to deduce the appropriate mechanism to sense the presence of NO for physiological regulation.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/química , Ferro/química , Metais/química , Óxidos de Nitrogênio/química , Compostos Nitrosos/química , Fatores de Transcrição/química , Absorciometria de Fóton , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Ferro/metabolismo , Cinética , Óxidos de Nitrogênio/metabolismo , Compostos Nitrosos/metabolismo , Oxirredução , Fatores de Transcrição/metabolismo
13.
Chemistry ; 18(13): 3955-68, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22354807

RESUMO

The dioxygen activation of a series of Cu(I)Cu(I)Cu(I) complexes based on the ligands (L) 3,3'-(1,4-diazepane- 1,4-diyl)bis(1-{[2-(dimethylamino)ethyl](methyl)amino}propan-2-ol)(7-Me) or 3,3'-(1,4-diazepane-1,4-diyl)bis(1-{[2-(diethylamino)ethyl](ethyl)amino}propan-2-ol)(7-Et) forms an intermediate capable of mediating facile O-atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7-Me, 7-Et, and 3,3'-(1,4-diazepane-1,4-diyl)bis[1-(4-methylpiperazin-1-yl)propan-2-ol] (7-N-Meppz) with dioxygen at -80, -55, and -35 °C in propionitrile (EtCN) by UV-visible, 77 K EPR, and X-ray absorption spectroscopy, and 7-N-Meppz and 7-Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both -80 and -55 °C, the mixing of the starting [Cu(I)Cu(I)Cu(I)(L)](1+) complex (1) with O(2)-saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [Cu(II)Cu(II)(µ-η(2):η(2)-peroxo)Cu(II)(L)](2+) (2) and the blue [Cu(II)Cu(II)(µ-O)Cu(II)(L)](2+) species (3). These observations are consistent with the initial formation of [Cu(II)Cu(II)(µ-O)(2)Cu(III)(L)](1+)(4), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [Cu(II)Cu(I)Cu(I)(L)](2+)(5) to form the green dioxygen adduct 2. Assignment of 2 to [Cu(II)Cu(II)(µ-η(2):η(2)-peroxo)Cu(II)(L)](2+) is consistent with its reactivity with water to give H(2)O(2) and the blue species 3, as well as its propensity to be photoreduced in the X-ray beam during X-ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1) rapid dioxygen chemistry; 2) facile O-atom transfer from the activated cluster to substrate; and 3) a suitable reductant to rapidly regenerate complex 1 to accomplish efficient catalytic turnover.


Assuntos
Cobre/química , Modelos Químicos , Compostos Organometálicos/química , Oxigênio/química , Espectroscopia de Ressonância de Spin Eletrônica , Methylococcus/química , Estrutura Molecular , Oxirredução
14.
Chemistry ; 17(17): 4774-87, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21400620

RESUMO

We employed the water-soluble cytochrome P450 BM-3 to study the activity and regiospecificity of oxidation of fluorinated n-octanes. Three mutations, A74G, F87V, and L188Q, were introduced into P450 BM-3 to allow the system to undergo n-octane oxidation. In addition, the alanine at residue 328 was replaced with a phenylalanine to introduce an aromatic residue into the hydrophobic pocket to examine whether or not van der Waals interactions between a C-F substituent in the substrate and the polarizable π system of the phenylalanine may be used to steer the positioning of the substrate within the active-site pocket of the enzyme and control the regioselectivity and stereoselectivity of hydroxylation. Interestingly, not only was the regioselectivity controlled when the fluorine substituent was judiciously positioned in the substrate, but the electron input into the iron-heme group became tightly coupled to the formation of product, essentially without abortive side reactions. Remarkable enhancement of the coupling efficiency between electron input and product formation was observed for a range of fluorinated octanes in the enzyme even without the A328F mutation, presumably because of interactions of the C-F substituent with the π system of the porphyrin macrocycle within the active-site pocket. Evidently, tightening the protein domain containing the heme pocket tunes the distribution of accessible enzyme conformations and the associated protein dynamics that activate the iron porphyrin for substrate hydroxylation to allow the reactions mediated by the high-valent Fe(IV)=O to become kinetically more commensurate with electron transfer from the flavin adenine dinucleotide (FAD)/flavin mononucleotide (FMN) reductase. These observations lend compelling evidence to support significant van der Waals interactions between the CF(2) group and aromatic π systems within the heme pocket when the fluorinated octane substrate is bound.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Flúor/química , Hidrocarbonetos Fluorados/química , Octanos/química , Transporte de Elétrons , Ligação de Hidrogênio , Hidroxilação , Conformação Molecular , Mutagênese , Oxirredução , Solubilidade , Estereoisomerismo , Água/química
15.
J Inorg Biochem ; 225: 111602, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547604

RESUMO

In this focused review, we portray the recently reported 2.5 Å cyro-EM structure of the particulate methane monooxygenase (pMMO) from M. capsulatus (Bath). The structure of the functional holo-pMMO near atomic resolution has uncovered the sites of the copper cofactors including the location of the active site in the enzyme. The three coppers seen in the original X-ray crystal structures of the enzyme are now augmented by additional coppers in the transmembrane domain as well as in the water-exposed C-terminal subdomain of the PmoB subunit. The cryo-EM structure offers the first glimpse of the catalytic machinery capable of methane oxidation with high selectivity and efficiency. The findings are entirely consistent with the biochemical and biophysical findings previously reported in the literature, including the chemistry of hydrocarbon hydroxylation, regeneration of the catalyst for multiple turnovers, and the mechanism of aborting non-productive cycles to ensure kinetic competence.


Assuntos
Metano/química , Oxigenases/química , Biocatálise , Domínio Catalítico , Cobre/química , Hidroquinonas/química , Methylococcus capsulatus/enzimologia , NAD/química , Oxirredução , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Subunidades Proteicas/química , Ubiquinona/análogos & derivados , Ubiquinona/química
16.
J Biol Chem ; 284(52): 36535-36546, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19858217

RESUMO

Vaccinia viral envelope protein A27 (110 amino acids) specifically interacts with heparin (HP) or heparan sulfate (HS) proteoglycans for cell surface attachment. To examine the binding mechanism, a truncated soluble form of A27 (sA27-aa; residues 21-84 of A27) with Cys(71) and Cys(72) mutated to Ala was used as the parent molecule. sA27-aa consists of two structurally distinct domains, a flexible Arg/Lys-rich heparin-binding site (HBS) (residues 21-32; (21)STKAAKKPEAKR(32)) and a rigid coiled-coil domain (residues 43-84), both essential for the specific binding. As shown by surface plasmon resonance (SPR), the binding affinity of sA27-aa for HP (K(A) = 1.25 x 10(8) m(-1)) was approximately 3 orders of magnitude stronger than that for nonspecific binding, such as to chondroitin sulfate (K(A) = 1.65 x 10(5) m(-1)). Using site-directed mutagenesis of HBS and solution NMR, we identified a "KKPE" segment with a turn-like conformation that mediates specific HP binding. In addition, a double mutant T22K/A25K in which the KKPE segment remained intact showed an extremely high affinity for HP (K(A) = 1.9 x 10(11) m(-1)). Importantly, T22K/A25K retained the binding specificity for HP and HS but not chondroitin sulfate, as shown by in vitro SPR and in vivo cell adhesion and competitive binding assays. Molecular modeling of the HBS was performed by dynamics simulations and provides an explanation of the specific binding mechanism in good agreement with the site-directed mutagenesis and SPR results. We conclude that a turn-like structure introduced by the KKPE segment in vaccinia viral envelope protein A27 is responsible for its specific binding to HP and to HS on cell surfaces.


Assuntos
Proteínas de Transporte/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Modelos Moleculares , Vaccinia virus/metabolismo , Proteínas Virais de Fusão/metabolismo , Motivos de Aminoácidos/fisiologia , Substituição de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células HeLa , Heparina/química , Heparitina Sulfato/química , Heparitina Sulfato/genética , Humanos , Proteínas de Membrana , Camundongos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/fisiologia , Vaccinia virus/genética , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
17.
Front Chem ; 8: 589178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195091

RESUMO

The process of selective oxy-functionalization of hydrocarbons using peroxide, O3, H2O2, O2, and transition metals can be carried out by the reactive oxygen species such as hydroxyl/hydroperoxyl radical and/or metal oxygenated species generated in the catalytic reaction. Thus, a variety of mechanisms have been proposed for the selective catalytic oxidation of various hydrocarbons including light alkanes, olefins, and simple aromatics by the biological metalloproteins and their biomimetics either in their homogeneous or heterogeneous platforms. Most studies involving these metalloproteins are Fe or Cu monooxygenases. The pathways carried out by these metalloenzymes in the oxidation of C-H bonds invoke either radical reaction mechanisms including Fenton's chemistry and hydrogen atom transfer followed by radical rebound reaction mechanism or electrophilic oxygenation/O-atom transfer by metal-oxygen species. In this review, we discuss the metal oxide nano-catalysts obtained from metal salts/molecular precursors (M = Cu, Fe, and V) that can easily form in situ through the oxidation of substrates using H2O2(aq) in CH3CN, and be facilely separated from the reaction mixtures as well as recycled for several times with comparable catalytic efficiency for the highly selective conversion from hydrocarbons including aromatics to oxygenates. The mechanistic insights revealed from the oxy-functionalization of simple aromatics mediated by the novel biomimetic metal oxide materials can pave the way toward developing facile, cost-effective, and highly efficient nano-catalysts for the selective partial oxidation of simple aromatics.

18.
Acc Chem Res ; 41(8): 969-79, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18605740

RESUMO

[Figure: see text]. The growing need for inexpensive methods to convert methane to methanol has sparked considerable interest in methods that catalyze this process. The integral membrane protein particulate methane monooxygenase (pMMO) mediates the facile conversion of methane to methanol in methanotrophic bacteria. Most evidence indicates that pMMO is a multicopper enzyme, and these copper ions support redox, dioxygen, and oxo-transfer chemistry. However, the exact identity of the copper species that mediates the oxo-transfer chemistry remains an area of intense debate. This highly complex enzyme is notoriously difficult to purify because of its instability outside the lipid bilayer and tendency to lose its essential metal cofactors. For this reason, pMMO has resisted both initial identification and subsequent isolation and purification for biochemical and biophysical characterization. In this Account, we describe evidence that pMMO is a multicopper protein. Its unique trinuclear copper cluster mediates dioxygen chemistry and O-atom transfer during alkane hydroxylation. Although a recent crystal structure did not show this tricopper cluster, we provide compelling evidence for such a cluster through redox potentiometry and EPR experiments on the "holo" enzyme in pMMO-enriched membranes. We also identify a site in the structure of pMMO that could accommodate this cluster. A hydrophobic pocket capable of harboring pentane, the enzyme's largest known substrate, lies adjacent to this site. In addition, we have designed and synthesized model tricopper clusters to provide further chemical evidence that a tricopper cluster mediates the enzyme's oxo-transfer chemistry. These biomimetic models exhibit similar spectroscopic properties and chemical reactivity to the putative tricopper cluster in pMMO. Based on computational analysis using density functional theory (DFT), triangular tricopper clusters are capable of harnessing a "singlet oxene" upon activation by dioxygen. An oxygen atom is then inserted via a concerted process into the C-H bond of an alkane in the transition state during hydroxylation. The turnover frequency and kinetic isotope effect predicted by DFT show excellent agreement with experimental data.


Assuntos
Cobre/metabolismo , Hidrocarbonetos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Oxirredução
19.
Solid State Nucl Magn Reson ; 36(1): 24-31, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19493660

RESUMO

(13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state NMR spectroscopy has been employed to analyze four vitamin D compounds, namely vitamin D3 (D3), vitamin D2 (D2), and the precursors ergosterol (Erg) and 7-dehydrocholesterol (7DHC). The (13)C NMR spectrum of D3 displays a doublet pattern for each of the carbon atoms, while that of Erg contains both singlet and doublet patterns. In the cases of 7DHC and D2, the (13)C spectra display various multiplet patterns, viz. singlets, doublets, triplets, and quartets. To overcome the signal overlap between the (13)C resonances of protonated and unprotonated carbons, we have subjected these vitamin D compounds to 1D (1)H-filtered (13)C CP/MAS and {(1)H}/(13)C heteronuclear correlation (Hetcor) NMR experiments. As a result, assisted by solution NMR data, all of the (13)C resonances have been successfully assigned to the respective carbon atoms of these vitamin D compounds. The (13)C multiplets are interpreted due to the presence of s-cis and s-trans configurations in the alpha- and beta-molecular conformers, consistent with computer molecular modeling determined by molecular dynamics and energy minimization calculations. To further characterize the ring conformations in D3, we have successfully extracted chemical shift tensor elements for the (13)C doublets. It is demonstrated that (13)C solid-state NMR spectroscopy provides a robust and high sensitive means of characterizing molecular conformations in vitamin D compounds.


Assuntos
Vitamina D/química , Anisotropia , Simulação por Computador , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular
20.
J Inorg Biochem ; 196: 110691, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31063931

RESUMO

In this study, we describe efforts to clarify the role of the copper cofactors associated with subunit B (PmoB) of the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) (M. capsulatus). This subunit exhibits strong affinity toward CuI ions. To elucidate the high copper affinity of the subunit, the full-length PmoB, and the N-terminal truncated mutants PmoB33-414 and PmoB55-414, each fused to the maltose-binding protein (MBP), are cloned and over-expressed into Escherichia coli (E. coli) K12 TB1 cells. The Y374F, Y374S and M300L mutants of these protein constructs are also studied. When this E. coli is grown with the pmoB gene in 1.0 mM CuII, it behaves like M. capsulatus (Bath) cultured under high copper stress with abundant membrane accumulation and high CuI content. The recombinant PmoB proteins are verified by Western blotting of antibodies directed against the MBP sub-domain in each of the copper-enriched PmoB proteins. Cu K-edge X-ray absorption near edge spectroscopy (XANES) of the copper ions confirms that all the PmoB recombinants are CuI proteins. All the PmoB proteins show evidence of a "dicopper site" according to analysis of the Cu extended X-ray absorption edge fine structure (EXAFS) of the membranes. No specific activities toward methane and propene oxidation are observed with the recombinant membrane-bound PmoB proteins. However, significant production of hydrogen peroxide is observed in the case of the PmoB33-414 mutant. Reaction of the dicopper site with dioxygen produces hydrogen peroxide and leads to oxidation of the CuI ions residing in the C-terminal sub-domain of the PmoB subunit.


Assuntos
Methylococcus capsulatus/enzimologia , Oxigenases/química , Oxigenases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Cobre/química , Cobre/metabolismo , Proteínas de Membrana/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA