Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35106553

RESUMO

Feature representation and discriminative learning are proven models and technologies in artificial intelligence fields; however, major challenges for machine learning on large biological datasets are learning an effective model with mechanistical explanation on the model determination and prediction. To satisfy such demands, we developed Vec2image, an explainable convolutional neural network framework for characterizing the feature engineering, feature selection and classifier training that is mainly based on the collaboration of principal component coordinate conversion, deep residual neural networks and embedded k-nearest neighbor representation on pseudo images of high-dimensional biological data, where the pseudo images represent feature measurements and feature associations simultaneously. Vec2image has achieved better performance compared with other popular methods and illustrated its efficiency on feature selection in cell marker identification from tissue-specific single-cell datasets. In particular, in a case study on type 2 diabetes (T2D) by multiple human islet scRNA-seq datasets, Vec2image first displayed robust performance on T2D classification model building across different datasets, then a specific Vec2image model was trained to accurately recognize the cell state and efficiently rank feature genes relevant to T2D which uncovered potential T2D cellular pathogenesis; and next the cell activity changes, cell composition imbalances and cell-cell communication dysfunctions were associated to our finding T2D feature genes from both population-shared and individual-specific perspectives. Collectively, Vec2image is a new and efficient explainable artificial intelligence methodology that can be widely applied in human-readable classification and prediction on the basis of pseudo image representation of biological deep sequencing data.


Assuntos
Inteligência Artificial , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/genética , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
2.
Bioinformatics ; 38(5): 1378-1384, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874987

RESUMO

MOTIVATION: The metabolome and microbiome disorders are highly associated with human health, and there are great demands for dual-omics interaction analysis. Here, we designed and developed an integrative platform, 3MCor, for metabolome and microbiome correlation analysis under the instruction of phenotype and with the consideration of confounders. RESULTS: Many traditional and novel correlation analysis methods were integrated for intra- and inter-correlation analysis. Three inter-correlation pipelines are provided for global, hierarchical and pairwise analysis. The incorporated network analysis function is conducive to rapid identification of network clusters and key nodes from a complicated correlation network. Complete numerical results (csv files) and rich figures (pdf files) will be generated in minutes. To our knowledge, 3MCor is the first platform developed specifically for the correlation analysis of metabolome and microbiome. Its functions were compared with corresponding modules of existing omics data analysis platforms. A real-world dataset was used to demonstrate its simple and flexible operation, comprehensive outputs and distinctive contribution to dual-omics studies. AVAILABILITYAND IMPLEMENTATION: 3MCor is available at http://3mcor.cn and the backend R script is available at https://github.com/chentianlu/3MCorServer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microbiota , Software , Humanos , Metadados , Metaboloma , Computadores
3.
Nutr J ; 22(1): 31, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37370090

RESUMO

AIM: To explore the genetic effects of CYP2C8, CYP2C9, CYP2J2, and EPHX2, the key genes involved in epoxyeicosatrienoic acid processing and degradation pathways in gestational diabetes mellitus (GDM) and metabolic traits in Chinese pregnant women. METHODS: A total of 2548 unrelated pregnant women were included, of which 938 had GDM and 1610 were considered as controls. Common variants were genotyped using the Infinium Asian Screening Array. Association studies of single nucleotide polymorphisms (SNPs) with GDM and related traits were performed using logistic regression and multivariable linear regression analyses. A genetic risk score (GRS) model based on 12 independent target SNPs associated with GDM was constructed. Logistic regression was used to estimate odds ratios and 95% confidence intervals, adjusting for potential confounders including age, pre-pregnancy body mass index, history of polycystic ovarian syndrome, history of GDM, and family history of diabetes, with GRS entered both as a continuous variable and categorized groups. The relationship between GRS and quantitative traits was also evaluated. RESULTS: The 12 SNPs in CYP2C8, CYP2C9, CYP2J2, and EPHX2 were significantly associated with GDM after adjusting for covariates (all P < 0.05). The GRS generated from these SNPs significantly correlated with GDM. Furthermore, a significant interaction between CYP2J2 and CYP2C8 in GDM (PInteraction = 0.014, ORInteraction= 0.61, 95%CI 0.41-0.90) was observed. CONCLUSION: We found significant associations between GDM susceptibility and 12 SNPs of the four genes involved in epoxyeicosatrienoic acid processing and degradation pathways in a Chinese population. Subjects with a higher GRS showed higher GDM susceptibility with higher fasting plasma glucose and area under the curve of glucose and poorer ß-cell function.


Assuntos
Diabetes Gestacional , Gravidez , Feminino , Humanos , Diabetes Gestacional/genética , Diabetes Gestacional/epidemiologia , Citocromo P-450 CYP2C8/genética , Predisposição Genética para Doença , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2J2 , Polimorfismo de Nucleotídeo Único
4.
PLoS Comput Biol ; 17(5): e1008962, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956788

RESUMO

In the past few years, a wealth of sample-specific network construction methods and structural network control methods has been proposed to identify sample-specific driver nodes for supporting the Sample-Specific network Control (SSC) analysis of biological networked systems. However, there is no comprehensive evaluation for these state-of-the-art methods. Here, we conducted a performance assessment for 16 SSC analysis workflows by using the combination of 4 sample-specific network reconstruction methods and 4 representative structural control methods. This study includes simulation evaluation of representative biological networks, personalized driver genes prioritization on multiple cancer bulk expression datasets with matched patient samples from TCGA, and cell marker genes and key time point identification related to cell differentiation on single-cell RNA-seq datasets. By widely comparing analysis of existing SSC analysis workflows, we provided the following recommendations and banchmarking workflows. (i) The performance of a network control method is strongly dependent on the up-stream sample-specific network method, and Cell-Specific Network construction (CSN) method and Single-Sample Network (SSN) method are the preferred sample-specific network construction methods. (ii) After constructing the sample-specific networks, the undirected network-based control methods are more effective than the directed network-based control methods. In addition, these data and evaluation pipeline are freely available on https://github.com/WilfongGuo/Benchmark_control.


Assuntos
Análise de Célula Única/métodos , Algoritmos , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , RNA-Seq/métodos
5.
J Gastroenterol Hepatol ; 36(4): 832-840, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33880762

RESUMO

For a long time, gut bacteria have been recognized for their important roles in the occurrence and progression of gastrointestinal diseases like colorectal cancer, and the ever-increasing amounts of microbiome data combined with other high-quality clinical and imaging datasets are leading the study of gastrointestinal diseases into an era of biomedical big data. The "omics" technologies used for microbiome analysis continuously evolve, and the machine learning or artificial intelligence technologies are key to extract the relevant information from microbiome data. This review intends to provide a focused summary of recent research and applications of microbiome big data and to discuss the use of artificial intelligence to combat gastrointestinal diseases.


Assuntos
Inteligência Artificial/tendências , Big Data , Gastroenteropatias/etiologia , Gastroenteropatias/microbiologia , Microbioma Gastrointestinal , Armazenamento e Recuperação da Informação/métodos , Conjuntos de Dados como Assunto
6.
BMC Bioinformatics ; 20(Suppl 25): 697, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874621

RESUMO

BACKGROUND: Along with the development of precision medicine, individual heterogeneity is attracting more and more attentions in clinical research and application. Although the biomolecular reaction seems to be some various when different individuals suffer a same disease (e.g. virus infection), the final pathogen outcomes of individuals always can be mainly described by two categories in clinics, i.e. symptomatic and asymptomatic. Thus, it is still a great challenge to characterize the individual specific intrinsic regulatory convergence during dynamic gene regulation and expression. Except for individual heterogeneity, the sampling time also increase the expression diversity, so that, the capture of similar steady biological state is a key to characterize individual dynamic biological processes. RESULTS: Assuming the similar biological functions (e.g. pathways) should be suitable to detect consistent functions rather than chaotic genes, we design and implement a new computational framework (ABP: Attractor analysis of Boolean network of Pathway). ABP aims to identify the dynamic phenotype associated pathways in a state-transition manner, using the network attractor to model and quantify the steady pathway states characterizing the final steady biological sate of individuals (e.g. normal or disease). By analyzing multiple temporal gene expression datasets of virus infections, ABP has shown its effectiveness on identifying key pathways associated with phenotype change; inferring the consensus functional cascade among key pathways; and grouping pathway activity states corresponding to disease states. CONCLUSIONS: Collectively, ABP can detect key pathways and infer their consensus functional cascade during dynamical process (e.g. virus infection), and can also categorize individuals with disease state well, which is helpful for disease classification and prediction.


Assuntos
Regulação da Expressão Gênica , Humanos , Fenótipo , Medicina de Precisão
7.
Nucleic Acids Res ; 45(20): e170, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28981699

RESUMO

Predicting pre-disease state or tipping point just before irreversible deterioration of health is a difficult task. Edge-network analysis (ENA) with dynamic network biomarker (DNB) theory opens a new way to study this problem by exploring rich dynamical and high-dimensional information of omics data. Although theoretically ENA has the ability to identify the pre-disease state during the disease progression, it requires multiple samples for such prediction on each individual, which are generally not available in clinical practice, thus limiting its applications in personalized medicine. In this work to overcome this problem, we propose the individual-specific ENA (iENA) with DNB to identify the pre-disease state of each individual in a single-sample manner. In particular, iENA can identify individual-specific biomarkers for the disease prediction, in addition to the traditional disease diagnosis. To demonstrate the effectiveness, iENA was applied to the analysis on omics data of H3N2 cohorts and successfully detected early-warning signals of the influenza infection for each individual both on the occurred time and event in an accurate manner, which actually achieves the AUC larger than 0.9. iENA not only found the new individual-specific biomarkers but also recovered the common biomarkers of influenza infection reported from previous works. In addition, iENA also detected the critical stages of multiple cancers with significant edge-biomarkers, which were further validated by survival analysis on both TCGA data and other independent data.


Assuntos
Causalidade , Diagnóstico Precoce , Marcadores Genéticos/genética , Influenza Humana/diagnóstico , Adulto , Algoritmos , Progressão da Doença , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Fatores de Risco
8.
Brief Bioinform ; 17(4): 576-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26411472

RESUMO

Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression data from a malaria vaccine trial by big-data-based edge biomarkers from module network rewiring-analysis. The illustrative results show that the identified module biomarkers can accurately distinguish vaccines with or without protection and outperformed previous reported gene signatures in terms of effectiveness and efficiency.


Assuntos
Biomarcadores/análise , Algoritmos , Bases de Dados Factuais , Progressão da Doença , Humanos
9.
Bioinformatics ; 33(17): 2706-2714, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28520848

RESUMO

MOTIVATION: Integrating different omics profiles is a challenging task, which provides a comprehensive way to understand complex diseases in a multi-view manner. One key for such an integration is to extract intrinsic patterns in concordance with data structures, so as to discover consistent information across various data types even with noise pollution. Thus, we proposed a novel framework called 'pattern fusion analysis' (PFA), which performs automated information alignment and bias correction, to fuse local sample-patterns (e.g. from each data type) into a global sample-pattern corresponding to phenotypes (e.g. across most data types). In particular, PFA can identify significant sample-patterns from different omics profiles by optimally adjusting the effects of each data type to the patterns, thereby alleviating the problems to process different platforms and different reliability levels of heterogeneous data. RESULTS: To validate the effectiveness of our method, we first tested PFA on various synthetic datasets, and found that PFA can not only capture the intrinsic sample clustering structures from the multi-omics data in contrast to the state-of-the-art methods, such as iClusterPlus, SNF and moCluster, but also provide an automatic weight-scheme to measure the corresponding contributions by data types or even samples. In addition, the computational results show that PFA can reveal shared and complementary sample-patterns across data types with distinct signal-to-noise ratios in Cancer Cell Line Encyclopedia (CCLE) datasets, and outperforms over other works at identifying clinically distinct cancer subtypes in The Cancer Genome Atlas (TCGA) datasets. AVAILABILITY AND IMPLEMENTATION: PFA has been implemented as a Matlab package, which is available at http://www.sysbio.ac.cn/cb/chenlab/images/PFApackage_0.1.rar . CONTACT: lnchen@sibs.ac.cn , liujuan@whu.edu.cn or zengtao@sibs.ac.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional/métodos , Neoplasias/genética , Análise por Conglomerados , Humanos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Software
10.
PLoS Comput Biol ; 13(7): e1005633, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28678795

RESUMO

Dynamic network biomarkers (DNB) can identify the critical state or tipping point of a disease, thereby predicting rather than diagnosing the disease. However, it is difficult to apply the DNB theory to clinical practice because evaluating DNB at the critical state required the data of multiple samples on each individual, which are generally not available, and thus limit the applicability of DNB. In this study, we developed a novel method, i.e., single-sample DNB (sDNB), to detect early-warning signals or critical states of diseases in individual patients with only a single sample for each patient, thus opening a new way to predict diseases in a personalized way. In contrast to the information of differential expressions used in traditional biomarkers to "diagnose disease", sDNB is based on the information of differential associations, thereby having the ability to "predict disease" or "diagnose near-future disease". Applying this method to datasets for influenza virus infection and cancer metastasis led to accurate identification of the critical states or correct prediction of the immediate diseases based on individual samples. We successfully identified the critical states or tipping points just before the appearance of disease symptoms for influenza virus infection and the onset of distant metastasis for individual patients with cancer, thereby demonstrating the effectiveness and efficiency of our method for quantifying critical states at the single-sample level.


Assuntos
Algoritmos , Biomarcadores Tumorais/metabolismo , Interpretação Estatística de Dados , Diagnóstico por Computador/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Progressão da Doença , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdução de Sinais
11.
BMC Genomics ; 16: 918, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26556243

RESUMO

BACKGROUND: Pathway enrichment analysis is a useful tool to study biology and biomedicine, due to its functional screening on well-defined biological procedures rather than separate molecules. The measurement of malfunctions of pathways with a phenotype change, e.g., from normal to diseased, is the key issue when applying enrichment analysis on a pathway. The differentially expressed genes (DEGs) are widely focused in conventional analysis, which is based on the great purity of samples. However, the disease samples are usually heterogeneous, so that, the genes with great differential expression variance (DEVGs) are becoming attractive and important to indicate the specific state of a biological system. In the context of differential expression variance, it is still a challenge to measure the enrichment or status of a pathway. To address this issue, we proposed Integrative Enrichment Analysis (IEA) based on a novel enrichment measurement. RESULTS: The main competitive ability of IEA is to identify dysregulated pathways containing DEGs and DEVGs simultaneously, which are usually under-scored by other methods. Next, IEA provides two additional assistant approaches to investigate such dysregulated pathways. One is to infer the association among identified dysregulated pathways and expected target pathways by estimating pathway crosstalks. The other one is to recognize subtype-factors as dysregulated pathways associated to particular clinical indices according to the DEVGs' relative expressions rather than conventional raw expressions. Based on a previously established evaluation scheme, we found that, in particular cohorts (i.e., a group of real gene expression datasets from human patients), a few target disease pathways can be significantly high-ranked by IEA, which is more effective than other state-of-the-art methods. Furthermore, we present a proof-of-concept study on Diabetes to indicate: IEA rather than conventional ORA or GSEA can capture the under-estimated dysregulated pathways full of DEVGs and DEGs; these newly identified pathways could be significantly linked to prior-known disease pathways by estimated crosstalks; and many candidate subtype-factors recognized by IEA also have significant relation with the risk of subtypes of genotype-phenotype associations. CONCLUSIONS: Totally, IEA supplies a new tool to carry on enrichment analysis in the complicate context of clinical application (i.e., heterogeneity of disease), as a necessary complementary and cooperative approach to conventional ones.


Assuntos
Biologia Computacional/métodos , Algoritmos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética/métodos , Humanos , Modelos Biológicos , Transdução de Sinais
12.
Bioinformatics ; 30(6): 852-9, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24177717

RESUMO

MOTIVATION: In this article, we develop a novel edge-based network i.e. edge-network, to detect early signals of diseases by identifying the corresponding edge-biomarkers with their dynamical network biomarker score from dynamical network biomarkers. Specifically, we derive an edge-network based on the second-order statistics representation of gene expression profiles, which is able to accurately represent the stochastic dynamics of the original biological system (with Gaussian distribution assumption) by combining with the traditional node-network, which is based only on the first-order statistics representation of the noisy data. In other words, we show that the stochastic network of a biological system can be described by the integration of its node-network and its edge-network in an accurate manner. RESULTS: By applying edge-network analysis to gene expressions of healthy adults within live influenza experiment sampling at time points before the appearance of infection symptoms, we identified the edge-biomarkers (80 edges with 22 densely connected genes) discovered in edge-networks corresponding to symptomatic adults, which were used to predict the subsequent outcomes of influenza infection. In particular, we not only correctly predict the final infection outcome of each individual at an early time point before his/her clinic symptom but also reveal the key molecules during the disease progression. The prediction accuracy achieves ~90% under the leave-one-out cross-validation. Furthermore, we demonstrate the superiority of our method on disease classification and predication by comparing with the conventional node-biomarkers. Our edge-network analysis not only opens a new way to understand pathogenesis at a network level due to the new representation for a stochastic network, but also provides a powerful tool to make the early diagnosis of diseases. CONTACT: lnchen@sibs.ac.cn SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Diagnóstico Precoce , Algoritmos , Biomarcadores/metabolismo , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Influenza Humana/diagnóstico , Influenza Humana/genética , Influenza Humana/metabolismo
13.
Bioinformatics ; 30(11): 1579-86, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24519381

RESUMO

MOTIVATION: Unlike traditional diagnosis of an existing disease state, detecting the pre-disease state just before the serious deterioration of a disease is a challenging task, because the state of the system may show little apparent change or symptoms before this critical transition during disease progression. By exploring the rich interaction information provided by high-throughput data, the dynamical network biomarker (DNB) can identify the pre-disease state, but this requires multiple samples to reach a correct diagnosis for one individual, thereby restricting its clinical application. RESULTS: In this article, we have developed a novel computational approach based on the DNB theory and differential distributions between the expressions of DNB and non-DNB molecules, which can detect the pre-disease state reliably even from a single sample taken from one individual, by compensating insufficient samples with existing datasets from population studies. Our approach has been validated by the successful identification of pre-disease samples from subjects or individuals before the emergence of disease symptoms for acute lung injury, influenza and breast cancer.


Assuntos
Doenças Assintomáticas , Biomarcadores/metabolismo , Lesão Pulmonar Aguda/diagnóstico , Algoritmos , Animais , Neoplasias da Mama/diagnóstico , Progressão da Doença , Feminino , Humanos , Influenza Humana/diagnóstico , Ratos
14.
J Transl Med ; 13: 189, 2015 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-26070628

RESUMO

In the conventional analysis of complex diseases, the control and case samples are assumed to be of great purity. However, due to the heterogeneity of disease samples, many disease genes are even not always consistently up-/down-regulated, leading to be under-estimated. This problem will seriously influence effective personalized diagnosis or treatment. The expression variance and expression covariance can address such a problem in a network manner. But, these analyses always require multiple samples rather than one sample, which is generally not available in clinical practice for each individual. To extract the common and specific network characteristics for individual patients in this paper, a novel differential network model, e.g. personalized dysfunctional gene network, is proposed to integrate those genes with different features, such as genes with the differential gene expression (DEG), genes with the differential expression variance (DEVG) and gene-pairs with the differential expression covariance (DECG) simultaneously, to construct personalized dysfunctional networks. This model uses a new statistic-like measurement on differential information, i.e., a differential score (DEVC), to reconstruct the differential expression network between groups of normal and diseased samples; and further quantitatively evaluate different feature genes in the patient-specific network for each individual. This DEVC-based differential expression network (DEVC-net) has been applied to the study of complex diseases for prostate cancer and diabetes. (1) Characterizing the global expression change between normal and diseased samples, the differential gene networks of those diseases were found to have a new bi-coloured topological structure, where their non hub-centred sub-networks are mainly composed of genes/proteins controlling various biological processes. (2) The differential expression variance/covariance rather than differential expression is new informative sources, and can be used to identify genes or gene-pairs with discriminative power, which are ignored by traditional methods. (3) More importantly, DEVC-net is effective to measure the expression state or activity of different feature genes and their network or modules in one sample for an individual. All of these results support that DEVC-net indeed has a clear advantage to effectively extract discriminatively interpretable features of gene/protein network of one sample (i.e. personalized dysfunctional network) even when disease samples are heterogeneous, and thus can provide new features like gene-pairs, in addition to the conventional individual genes, to the analysis of the personalized diagnosis and prognosis, and a better understanding on the underlying biological mechanisms.


Assuntos
Doença/genética , Redes Reguladoras de Genes , Modelos Genéticos , Medicina de Precisão , Processamento Alternativo/genética , Bases de Dados Genéticas , Éxons/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Heterogeneidade Genética , Humanos , Masculino , Fenótipo , Neoplasias da Próstata/genética
15.
J Diabetes ; 16(4): e13549, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584275

RESUMO

AIMS: Management of blood glucose fluctuation is essential for diabetes. Exercise is a key therapeutic strategy for diabetes patients, although little is known about determinants of glycemic response to exercise training. We aimed to investigate the effect of combined aerobic and resistance exercise training on blood glucose fluctuation in type 2 diabetes patients and explore the predictors of exercise-induced glycemic response. MATERIALS AND METHODS: Fifty sedentary diabetes patients were randomly assigned to control or exercise group. Participants in the control group maintained sedentary lifestyle for 2 weeks, and those in the exercise group specifically performed combined exercise training for 1 week. All participants received dietary guidance based on a recommended diet chart. Glycemic fluctuation was measured by flash continuous glucose monitoring. Baseline fat and muscle distribution were accurately quantified through magnetic resonance imaging (MRI). RESULTS: Combined exercise training decreased SD of sensor glucose (SDSG, exercise-pre vs exercise-post, mean 1.35 vs 1.10 mmol/L, p = .006) and coefficient of variation (CV, mean 20.25 vs 17.20%, p = .027). No significant change was observed in the control group. Stepwise multiple linear regression showed that baseline MRI-quantified fat and muscle distribution, including visceral fat area (ß = -0.761, p = .001) and mid-thigh muscle area (ß = 0.450, p = .027), were significantly independent predictors of SDSG change in the exercise group, as well as CV change. CONCLUSIONS: Combined exercise training improved blood glucose fluctuation in diabetes patients. Baseline fat and muscle distribution were significant factors that influence glycemic response to exercise, providing new insights into personalized exercise intervention for diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Glicemia , Automonitorização da Glicemia , Exercício Físico/fisiologia , Músculo Esquelético
16.
Cell Discov ; 10(1): 28, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472169

RESUMO

Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).

17.
Medicine (Baltimore) ; 102(29): e34251, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478210

RESUMO

This study aimed to investigate the impact of distinct metastasis patterns on the overall survival (OS) of individuals diagnosed with organ metastatic lung squamous cell carcinoma (LUSC). OS was calculated using the Kaplan-Meier method, and univariate and multivariate Cox regression analyses were conducted to further assess prognostic factors. A total of 36,025 cases meeting the specified criteria were extracted from the Surveillance, Epidemiology, and End Results database. Among these patients, 30.60% (11,023/36,025) were initially diagnosed at stage IV, and 22.03% (7936/36,025) of these individuals exhibited metastasis in at least 1 organ, including the liver, bone, lung, and brain. Among the 4 types of single metastasis, patients with bone metastasis had the lowest mean OS, at 9.438 months (95% CI: 8.684-10.192). Furthermore, among patients with dual-organ metastases, those with both brain and liver metastases had the shortest mean OS, at 5.523 months (95% CI: 3.762-7.285). Multivariate Cox regression analysis revealed that metastatic site is an independent prognostic factor for OS in patients with single and dual-organ metastases. Chemotherapy was beneficial for patients with single and multiple-organ metastases; although surgery was advantageous for those with single and dual-organ metastases, it did not affect the long-term prognosis of patients with triple organ metastases. Radiotherapy only conferred benefits to patients with single-organ metastasis. LUSC patients exhibit a high incidence of metastasis at the time of initial diagnosis, with significant differences in long-term survival among patients with different patterns of metastasis. Among single-organ metastasis cases, lung metastasis is the most frequent and is associated with the longest mean OS. Regarding treatment options, patients with single-organ metastasis can benefit from chemotherapy, surgery, and radiotherapy, and those with metastasis in 2 organs can benefit from chemotherapy and surgery. Patients with metastasis in more than 2 organs, however, can only benefit from chemotherapy. Understanding the variations in metastasis patterns assists in guiding pretreatment assessments and in determining appropriate therapeutic interventions for LUSC.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Prognóstico , Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia , Pulmão/patologia
18.
Free Radic Biol Med ; 209(Pt 1): 9-17, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37806596

RESUMO

BACKGROUND: Evidence from longitudinal studies is crucial to enhance our understanding of the role of metabolites in the progression of gestational diabetes mellitus (GDM). Herein, a longitudinal untargeted metabolomic study was conducted to reveal the metabolomic profiles and biomarkers associated with the progression of GDM, and characterize the changing patterns of metabolites. METHODS: We collected serum samples at three trimesters from 30 patients with GDM and 30 healthy Chinese pregnant women with pre-pregnancy BMI, age, and parity matched, and untargeted metabolomic analysis was performed, followed by machine learning approaches that integrated bootstrap and LASSO. Cluster analysis was conducted to elucidate the patterns of metabolite changes. Pathway analyses were conducted to gain insights into the underlying pathways involved. RESULTS: A total of 32 metabolites, mainly belonging to amino acid and its derivatives, were significantly associated with GDM across three trimesters, and were clustered into three distinct patterns. Metabolites belonging to phosphatidylcholines, lysophosphatidylcholines, lysophosphatidic acids, and lysophosphatidylethanolamines were consistently upregulated, and 2,3-Dihydroxypropyl dihydrogen phosphate was downregulated in GDM group. Amino acid-related, glycerophospholipid, and vitamin B6 metabolism were enriched in multiple trimesters. The levels of allantoic acid, which was positively correlated with blood glucose, was consistently higher in GDM patients and exhibited good discriminatory ability for GDM in the early and mid-pregnancy. CONCLUSION: We identified and characterized distinct patterns of metabolites associated with GDM throughout pregnancy, and found that allantoic acid was a potential biomarker for early diagnosis of GDM.


Assuntos
Diabetes Gestacional , Gravidez , Humanos , Feminino , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Aminoácidos/metabolismo , Metabolômica , Biomarcadores , Aprendizado de Máquina
19.
Front Pharmacol ; 14: 1084453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180703

RESUMO

Zoledronic acid (ZOL) is a potent antiresorptive agent that increases bone mineral density (BMD) and reduces fracture risk in postmenopausal osteoporosis (PMOP). The anti-osteoporotic effect of ZOL is determined by annual BMD measurement. In most cases, bone turnover markers function as early indicators of therapeutic response, but they fail to reflect long-term effects. We used untargeted metabolomics to characterize time-dependent metabolic shifts in response to ZOL and to screen potential therapeutic markers. In addition, bone marrow RNA-seq was performed to support plasma metabolic profiling. Sixty rats were assigned to sham-operated group (SHAM, n = 21) and ovariectomy group (OVX, n = 39) and received sham operation or bilateral ovariectomy, respectively. After modeling and verification, rats in the OVX group were further divided into normal saline group (NS, n = 15) and ZOL group (ZA, n = 18). Three doses of 100 µg/kg ZOL were administrated to the ZA group every 2 weeks to simulate 3-year ZOL therapy in PMOP. An equal volume of saline was administered to the SHAM and NS groups. Plasma samples were collected at five time points for metabolic profiling. At the end of the study, selected rats were euthanatized for bone marrow RNA-seq. A total number of 163 compound were identified as differential metabolites between the ZA and NS groups, including mevalonate, a critical molecule in target pathway of ZOL. In addition, prolyl hydroxyproline (PHP), leucyl hydroxyproline (LHP), 4-vinylphenol sulfate (4-VPS) were identified as differential metabolites throughout the study. Moreover, 4-VPS negatively correlated with increased vertebral BMD after ZOL administration as time-series analysis revealed. Bone marrow RNA-seq showed that the PI3K-AKT signaling pathway was significantly associated with ZOL-mediated changes in expression (adjusted-p = 0.018). In conclusion, mevalonate, PHP, LHP, and 4-VPS are candidate therapeutic markers of ZOL. The pharmacological effect of ZOL likely occurs through inhibition of the PI3K-AKT signaling pathway.

20.
J Clin Endocrinol Metab ; 108(7): 1768-1775, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-36611251

RESUMO

OBJECTIVE: To define somatic variants of parathyroid adenoma (PA) and to provide novel insights into the underlying molecular mechanism of sporadic PA. METHODS: Basic clinical characteristics and biochemical indices of 73 patients with PA were collected. Whole-exome sequencing was performed on matched tumor-constitutional DNA pairs to detect somatic alterations. Functional annotation was carried out by ingenuity pathway analysis afterward. The protein expression of the variant gene was confirmed by immunohistochemistry, and the relationship between genotype and phenotype was analyzed. RESULTS: Somatic variants were identified in 1549 genes, with an average of 69 variants per tumor (range, 13-2109; total, 9083). Several novel recurrent somatic variants were detected, such as KMT2D (15/73), MUC4 (14/73), POTEH (13/73), CD22 (12/73), HSPA2 (12/73), HCFC1 (11/73), MAGEA1 (11/73), and SLC4A3 (11/73), besides the previously reported PA-related genes, including MEN1 (11/73), CASR (6/73), MTOR (4/73), ASXL3 (3/73), FAT1 (3/73), ZFX (5/73), EZH1 (2/73), POT1 (2/73), and EZH2 (1/73). Among them, KMT2D might be the candidate driver gene of PA. Crucially, 5 patients carried somatic mutations in CDC73, showed an aggressive phenotype similar to that of parathyroid carcinoma (PC), and had a decreased expression of parafibromin. Pathway analysis of recurrent potential PA-associated driver variant genes revealed functional enrichments in the signaling pathway of Notch. CONCLUSION: Our study expanded the pathogenic variant spectrum of PA and indicated that KMT2D might be a novel candidate driver gene and be considered as a diagnostic biomarker for PA. Meanwhile, CDC73 mutations might be an early developmental event from PA to PC. The results provided insights into elucidating the pathogenesis of parathyroid tumorigenesis and a certain basis for clinical diagnosis and treatment.


Assuntos
Neoplasias das Paratireoides , Humanos , População do Leste Asiático , Genômica , Mutação , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA