Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(25): e2311945, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196051

RESUMO

Hybrid ion capacitors (HIC) are receiving a lot of attention due to their potential to achieve high energy and power densities, but they remain insufficient. It is imperative to explore outstanding and environmentally benign electrode materials to achieve high-performing HIC systems. Here, a unique boron carbon nitride (BCN)-based HIC system that comprises a microporous BCN structure and Fe1-xS nanoparticle incorporated BCN nanosheets (BNF) as cathode and anode, respectively is reported. The BNF is prepared through a facile one-pot calcination process using dithiooxamide (DTO), boric acid, and iron source. In situ, crystal growth of Fe1-xS facilitates the formation of BCN structure through the creation of holes/defects in the polymeric structure. The first principle density functional (DFT) theory simulations demonstrate the structural and electronic properties of the hybrid of BCN and Fe1-xS as compelling anode materials for HIC applications. The DFT calculations reveal that both BCN and BNF structures have excellent metallic characters with Li+ storage capacities of 128.4 and 1021.38 mAh g-1 respectively. These findings are confirmed experimentally where the BCN-based HIC system delivers exceptional energy and power densities of 267.5 Wh kg-1/749.5 W kg-1 toward Li+ storage, which outweighs previous HIC performances and demonstrates favorable performance for Li+ and Na+ storages.

2.
Phys Rev Lett ; 133(3): 036202, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39094151

RESUMO

Ferroelectric hafnia-based thin films have attracted significant interest due to their compatibility with complementary metal-oxide-semiconductor technology (CMOS). Achieving and stabilizing the metastable ferroelectric phase in these films is crucial for their application in ferroelectric devices. Recent research efforts have concentrated on the stabilization of the ferroelectric phase in hafnia-based films and delving into the mechanisms responsible for this stability. In this study, we experimentally demonstrate that stabilization of the ferroelectric phase in Hf_{0.5}Zr_{0.5}O_{2} (HZO) can be controlled by the interfacial charge transfer and the associated hole doping of HZO. Using the meticulously engineered charge transfer between an La_{1-x}Sr_{x}MnO_{3} buffer layer with variable Sr concentration x and an HZO film, we find the optimal x=0.33 that provides the required hole doping of HZO to most efficiently stabilize its ferroelectric phase. Our theoretical modeling reveals that the competition of the hole distribution between the threefold and fourfold coordinated oxygen sites in HZO controls the enhancement or reduction of the ferroelectric phase. Our findings offer a novel strategy to stabilize the ferroelectric phase of hafnia-based films and provide new insights into the development of ferroelectric devices compatible with CMOS.

3.
Phys Rev Lett ; 133(6): 066503, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39178458

RESUMO

Topotactic reduction utilizing metal hydrides as reagents has emerged as an effective approach to achieve exceptionally low oxidization states of metal ions and unconventional coordination networks. This method opens avenues to the development of entirely new functional materials, with one notable example being the infinite-layer nickelate superconductors. However, the reduction effect on the atomic reconstruction and electronic structures-crucial for superconductivity-remains largely unresolved. We designed two sets of control Nd_{0.8}Sr_{0.2}NiO_{2} thin films and used secondary ion mass spectroscopy to highlight the absence of reduction-induced hydrogen intercalation. X-ray absorption spectroscopy revealed a significant linear dichroism with dominant Ni 3d_{x2-y2} orbitals on superconducting samples, indicating a Ni single-band nature of infinite-layer nickelates. Consistent with the superconducting T_{c}, the Ni 3d orbitals asymmetry manifests a domelike dependence on the reduction duration. Our results unveil the critical role of reduction in modulating the Ni-3d orbital polarization and its impact on the superconducting properties.

4.
Angew Chem Int Ed Engl ; 63(7): e202317267, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38158770

RESUMO

The electrosynthesis of hydrogen peroxide (H2 O2 ) via two-electron (2e- ) oxygen (O2 ) reduction reaction (ORR) has great potential to replace the traditional energy-intensive anthraquinone process, but the design of low-cost and highly active and selective catalysts is greatly challenging for the long-term H2 O2 production under industrial relevant current density, especially under neutral electrolytes. To address this issue, this work constructed a carboxylated hexagonal boron nitride/graphene (h-BN/G) heterojunction on the commercial activated carbon through the coupling of B, N co-doping with surface oxygen groups functionalization. The champion catalyst exhibited a high 2e- ORR selectivity (>95 %), production rate (up to 13.4 mol g-1 h-1 ), and Faradaic efficiency (FE, >95 %). The long-term H2 O2 production under the high current density of 100 mA cm-2 caused the cumulative concentration as high as 2.1 wt %. The combination of in situ Raman spectra and theoretical calculation indicated that the carboxylated h-BN/G configuration promotes the adsorption of O2 and the stabilization of the key intermediates, allowing a low energy barrier for the rate-determining step of HOOH* release from the active site and thus improving the 2e- ORR performance. The fast dye degradation by using this electrochemical synthesized H2 O2 further illustrated the promising practical application.

5.
Angew Chem Int Ed Engl ; : e202415202, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193917

RESUMO

Solar carbon dioxide (CO2) reduction provides an attractive alternative to producing sustainable chemicals and fuel. However, the construction of a highly active photocatalyst was challenging because of the rapid charge recombination and sluggish surface CO2 reduction. Herein, a unique Co-N4Cl2 single site was fabricated by loading Co species into the 2,2'-bipyridine and triazine-containing covalent organic framework (COF) for CO2 conversion into syngas under visible light irradiation. The resulting champion catalyst TPy-COF-Co enabled a record-high CO production rate of 426 mmol g-1 h-1, associated with the unprecedented turnover number (TON) and turnover frequency (TOF) of 2095 and 1607 h-1, respectively. The catalyst also exhibited favorable recycling performance and widely adjustable syngas production (CO/H2 ratio: 1.8:1-1:16). A systematical investigation including operando synchrotron X-ray absorption fine structure (XAFS) spectroscopy, in-situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and theoretical calculation indicated that the triazine-based COF framework promoted the charge transfer towards the single Co-N4Cl2 sites that greatly promoted the CO2 activation by lowering the energy barrier of *COOH generation, facilitating the CO2 transformation. This work highlights the great potential of the molecular regulation of COF-derived single-atom catalysts to boost CO2 photoreduction efficiency.

6.
Small ; : e2304587, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072818

RESUMO

Sodium-ion batteries (SIBs) have received tremendous attention owing to their low cost, high working voltages, and energy density. However, the design and development of highly efficient SIBs represent a great challenge. Here, a unique and reliable approach is reported to prepare carbon nitride (CN) hybridized with nickel iron sulfide (NFCN) using simple reaction between Ni-Fe layered double hydroxide and dithiooxamide. The characterization results demonstrate that the hybridization with optimal amount of CN induces local distortion in the crystal structure of the hybrid, which would benefit SIB performance. Systematic electrochemical studies with a half-cell configuration show that the present hybrid structure exhibits a promising reversible specific capacity of 348 mAh g-1 at 0.1 A g-1 after 100 cycles with good rate capability. Simulation result reveals that the iron atoms in nickel iron sulfide act as a primary active site to accommodate Na+ ions. At last, with a full cell configuration using NFCN and Na3 V2 (PO4 )2 O2 F as the anode and cathode, respectively, the specific capacity appears to be ≈95 mAh g-1 after 50 cycles at 0.1 A g-1 condition. This excellent performance of these hybrids can be attributed to the synergistic effect of the incorporated CN species and the high conductivity of nickel-iron sulfide.

7.
Small ; : e2304369, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715070

RESUMO

High-magnetization materials play crucial roles in various applications. However, the past few decades have witnessed a stagnation in the discovery of new materials with high magnetization. In this work, Ni/NiO nanocomposites are fabricated by depositing Ni and NiO thin layers alternately, followed by annealing at specific temperatures. Both the as-deposited samples and those annealed at 373 K exhibit low magnetization. However, the samples annealed at 473 K exhibit a significantly enhanced saturation magnetization exceeding 607 emu cm-3 at room temperature, surpassing that of pure Ni (480 emu cm-3 ). Material characterizations indicate that the composite comprises NiO nanoclusters of size 1-2 nm embedded in the Ni matrix. This nanoclustered NiO is primarily responsible for the high magnetization, as confirmed by density functional theory calculations. The calculations also indicate that the NiO clusters are ferromagnetically coupled with Ni, resulting in enhanced magnetization. This work demonstrates a new route toward developing artificial high-magnetization materials using the high magnetic moments of nanoclustered antiferromagnetic materials.

8.
Arterioscler Thromb Vasc Biol ; 40(11): 2649-2664, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938216

RESUMO

OBJECTIVE: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a critical role in atherosclerosis, vascular restenosis, and hypertension. Choline exerts cardioprotective effects; however, little is known about its effects on VSMC phenotypic switching and vascular remodeling. Here, we investigated whether choline modulates VSMC phenotypic changes and explored the underlying mechanisms. Approach and Results: In cultured VSMCs, choline promoted Nrf2 (nuclear factor erythroid 2-related factor 2) nuclear translocation, inducing the expression of HO-1 (heme oxygenase-1) and NQO-1 (NAD[P]H quinone oxidoreductase-1). Consequently, choline ameliorated Ang II (angiotensin II)-induced increases in NOX (NAD[P]H oxidase) expression and the mitochondrial reactive oxygen species level, thereby attenuating Ang II-induced VSMC phenotypic switching, proliferation, and migration, presumably via M3AChRs (type 3 muscarinic acetylcholine receptors). Downregulation of M3AChR or Nrf2 diminished choline-mediated upregulation of Nrf2, HO-1, and NQO-1 expression, as well as inhibition of VSMC phenotypic transformation, suggesting that M3AChR and Nrf2 activation are responsible for the protective effects of choline. Moreover, activation of the Nrf2 pathway by sulforaphane suppressed Ang II-induced VSMC phenotypic switching and proliferation, indicating that Nrf2 is a key regulator of VSMC phenotypic switching and vascular homeostasis. In a rat model of abdominal aortic constriction in vivo, choline attenuated VSMC phenotypic transformation and vascular remodeling in a manner related to activation of the Nrf2 pathway. CONCLUSIONS: These results reveal that choline impedes VSMC phenotypic switching, proliferation, migration, and vascular remodeling by activating M3AChR and Nrf2-antioxidant signaling and suggest a novel role for Nrf2 in VSMC phenotypic modulation.


Assuntos
Plasticidade Celular/efeitos dos fármacos , Colina/farmacologia , Agonistas Muscarínicos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Receptor Muscarínico M3/agonistas , Remodelação Vascular/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fator 2 Relacionado a NF-E2/genética , Fenótipo , Ratos Sprague-Dawley , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Transdução de Sinais
9.
Nano Lett ; 20(2): 1101-1109, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31944125

RESUMO

Oxide heterostructures have attracted a lot of interest because of their rich exotic phenomena and potential applications. Recently, a greatly enhanced tunneling electroresistance (TER) of ferroelectric tunnel junctions (FTJs) has been realized in such heterostructures. However, our understanding on the electronic structure of resistance response with polarization reversal and the origin of huge TER is still lacking. Here, we report on electronic structures, particularly at the interface and surface, and the control of the spontaneous polarization of BaTiO3 films by changing the termination of a SrTiO3 substrate. Interestingly, unusual electron and hole midgap states are concurrently formed and accompanied by orbital reconstructions, which determine the ferroelectric polarization orientation in the BaTiO3/SrTiO3. Such unusual midgap states, which yield a strong electronic screening effect, reduce the ferroelectric barrier width and height, and pin the ferroelectric polarization, lead to a dramatic enhancement of the TER effect. The midgap states are also observed in BaTiO3 films on electron-doped Nb/SrTiO3 revealing its universality. Our result provides new insight into the origin of the huge TER effect and opens a new route for designing ferroelectric tunnel junction-based devices with huge TER through interface engineering.

10.
Nano Lett ; 20(4): 2493-2499, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32134679

RESUMO

Using interlayer interaction to control functional heterostructures with atomic-scale designs has become one of the most effective interface-engineering strategies nowadays. Here, we demonstrate the effect of a crystalline LaFeO3 buffer layer on amorphous and crystalline LaAlO3/SrTiO3 heterostructures. The LaFeO3 buffer layer acts as an energetically favored electron acceptor in both LaAlO3/SrTiO3 systems, resulting in modulation of interfacial carrier density and hence metal-to-insulator transition. For amorphous and crystalline LaAlO3/SrTiO3 heterostructures, the metal-to-insulator transition is found when the LaFeO3 layer thickness crosses 3 and 6 unit cells, respectively. Such different critical LaFeO3 thicknesses are explained in terms of distinct characteristic lengths of the redox-reaction-mediated and polar-catastrophe-dominated charge transfer, controlled by the interfacial atomic contact and Thomas-Fermi screening effect, respectively. Our results not only shed light on the complex interlayer charge transfer across oxide heterostructures but also provide a new route to precisely tailor the charge-transfer process at a functional interface.

11.
Angew Chem Int Ed Engl ; 60(39): 21242-21249, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34378296

RESUMO

Mesoporous carbon nitrides with C3 N5 and C3 N6 stoichiometries created a new momentum in the field of organic metal-free semiconductors owing to their unique band structures and high basicity. Here, we report on the preparation of a novel graphitic microporous carbon nitride with a tetrazine based chemical structure and the composition of C3 N5.4 using ultra-stable Y zeolite as the template and aminoguanidine hydrochloride, a high nitrogen-containing molecule, as the CN precursor. Spectroscopic characterization and density functional theory calculations reveal that the prepared material exhibits a new molecular structure, which comprises two tetrazines and one triazine rings in the unit cell and is thermodynamically stable. The resultant carbon nitride shows an outstanding surface area of 130.4 m2 g-1 and demonstrates excellent CO2 adsorption per unit surface area of 47.54 µmol m-2 , which is due to the existence of abundant free NH2 groups, basic sites and microporosity. The material also exhibits highly selective sensing over water molecules (151.1 mmol g-1 ) and aliphatic hydrocarbons due to its unique microporous structure with a high amount of hydrophilic nitrogen moieties and recognizing ability towards small molecules.

12.
J Mol Cell Cardiol ; 128: 26-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30660679

RESUMO

DNA methylation is a well-defined epigenetic modification that regulates gene transcription. However, the role of DNA methylation in the cardiac hypertrophy seen in hypertension is unclear. This study was performed to investigate genome-wide DNA methylation profiles in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKY), and the cardioprotective effect of choline. Eight-week-old male SHRs received intraperitoneal injections of choline (8 mg/kg/day) for 8 weeks. SHRs showed aberrant methylation distribution on chromosomes and genome regions, with decreased methylation levels at CHG and CHH sites. A total of 91,559 differentially methylated regions (DMRs) were detected between SHRs and WKY rats, of which 28,197 were demethylated and 63,362 were methylated. Choline treatment partly restored the DMRs in SHRs, which were related to 131 genes. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis of DMRs suggested that choline partly reversed the dysfunctions of biological processes, cellular components and molecular functions in SHRs. Moreover, the inhibition of 2-oxoglutarate accumulation by choline, thereby inhibiting excessive activation of ten-eleven translocation methylcytosine dioxygenase enzymes, may correlate with the beneficial effects of choline on methylation levels, cardiac hypertrophy and cardiac function of SHRs, as indicated by decreased heart rate and blood pressure, and increased ejection fraction and fractional shortening. This study provides the first genome-wide DNA methylation profile of the hypertrophic myocardium of SHRs and suggests a novel role for this epigenetic modification in hypertension. Choline treatment may represent a promising approach for modification of DNA methylation and optimization of the epigenetic profile for antihypertensive therapy.


Assuntos
Cardiomegalia/tratamento farmacológico , Colina/farmacologia , Metilação de DNA/genética , Hipertensão/tratamento farmacológico , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/genética , Cardiomegalia/patologia , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Genoma/efeitos dos fármacos , Humanos , Hipertensão/genética , Hipertensão/patologia , Ácidos Cetoglutáricos/metabolismo , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/efeitos dos fármacos , Sequenciamento Completo do Genoma
13.
Am J Physiol Endocrinol Metab ; 317(2): E312-E326, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211620

RESUMO

Diabetic patients are more susceptible to myocardial ischemia damage than nondiabetic patients, with worse clinical outcomes and greater mortality. The mechanism may be related to glucose metabolism, mitochondrial homeostasis, and oxidative stress. Pyridostigmine may improve vagal activity to protect cardiac function in cardiovascular diseases. Researchers have not determined whether pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. In the present study, autonomic imbalance, myocardial damage, mitochondrial dysfunction, and oxidative stress were exacerbated in isoproterenol-stimulated diabetic mice, revealing the myocardial vulnerability of diabetic mice to injury compared with mice with diabetes or exposed to isoproterenol alone. Compared with normal mice, the expression of glucose transporters (GLUT)1/4 phosphofructokinase (PFK) FB3, and pyruvate kinase isoform (PKM) was decreased in diabetic mice, but increased in isoproterenol-stimulated normal mice. Following exposure to isoproterenol, the expression of (GLUT)1/4 phosphofructokinase (PFK) FB3, and PKM decreased in diabetic mice compared with normal mice. The downregulation of SIRT3/AMPK and IRS-1/Akt in isoproterenol-stimulated diabetic mice was exacerbated compared with that in diabetic mice or isoproterenol-stimulated normal mice. Pyridostigmine improved vagus activity, increased GLUT1/4, PFKFB3, and PKM expression, and ameliorated mitochondrial dysfunction and oxidative stress to reduce myocardial damage in isoproterenol-stimulated diabetic mice. Based on these results, it was found that pyridostigmine may reduce myocardial vulnerability to injury via the SIRT3/AMPK and IRS-1/Akt pathways in diabetic mice with isoproterenol-induced myocardial damage. This study may provide a potential therapeutic target for myocardial damage in diabetic patients.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas/prevenção & controle , Glucose/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Isquemia Miocárdica/prevenção & controle , Brometo de Piridostigmina/farmacologia , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/fisiologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Brometo de Piridostigmina/uso terapêutico
14.
Sheng Li Xue Bao ; 71(2): 216-224, 2019 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-31008481

RESUMO

Obesity is an important risk factor for cardiovascular diseases, which can lead to a variety of cardiovascular diseases including myocardial remodeling. Obesity may induce myocardial dysfunction by affecting hemodynamics, inducing autonomic imbalance, adipose tissue dysfunction, and mitochondrial dyshomeostasis. The key necessary biochemical functions for metabolic homeostasis are performed in mitochondria, and mitochondrial homeostasis is considered as one of the key determinants for cell viability. Mitochondrial homeostasis is regulated by dynamic regulation of mitochondrial fission and fusion, as well as mitochondrial cristae remodeling, biogenesis, autophagy, and oxidative stress. The mitochondrial fission-fusion and morphological changes of mitochondrial cristae maintain the integrity of the mitochondrial structure. The mitochondria maintain a "healthy" state by balancing biogenesis and autophagy, while reactive oxygen species can act as signaling molecules to regulate intracellular signaling. The excessive accumulation of lipids and lipid metabolism disorder in obesity leads to mitochondrial dyshomeostasis, which activate the apoptotic cascade and lead to myocardial remodeling. In this review, we provide an overview of the recent research progress on obesity-induced myocardial remodeling and its possible mechanism of mitochondrial dyshomeostasis.


Assuntos
Mitocôndrias/patologia , Dinâmica Mitocondrial , Miocárdio/patologia , Obesidade/fisiopatologia , Humanos , Espécies Reativas de Oxigênio
15.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1037-1050, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29309922

RESUMO

Obesity, a major contributor to the development of cardiovascular diseases, is associated with an autonomic imbalance characterized by sympathetic hyperactivity and diminished vagal activity. Vagal activation plays important roles in weight loss and improvement of cardiac function. Pyridostigmine is a reversible acetylcholinesterase inhibitor, but whether it ameliorates cardiac lipid accumulation and cardiac remodeling in rats fed a high-fat diet has not been determined. This study investigated the effects of pyridostigmine on high-fat diet-induced cardiac dysfunction and explored the potential mechanisms. Rats were fed a normal or high-fat diet and treated with pyridostigmine. Vagal discharge was evaluated using the BL-420S system, and cardiac function by echocardiograms. Lipid deposition and cardiac remodeling were determined histologically. Lipid utility was assessed by qPCR. A high-fat diet led to a significant reduction in vagal discharge and lipid utility and a marked increase in lipid accumulation, cardiac remodeling, and cardiac dysfunction. Pyridostigmine improved vagal activity and lipid metabolism disorder and cardiac remodeling, accompanied by an improvement of cardiac function in high-fat diet-fed rats. An increase in the browning of white adipose tissue in pyridostigmine-treated rats was also observed and linked to the expression of UCP-1 and CIDEA. Additionally, pyridostigmine facilitated activation of brown adipose tissue via activation of the SIRT-1/AMPK/PGC-1α pathway. In conclusion, a high-fat diet resulted in cardiac lipid accumulation, cardiac remodeling, and a significant decrease in vagal discharge. Pyridostigmine ameliorated cardiomyopathy, an effect related to reduced cardiac lipid accumulation, and facilitated the browning of white adipose tissue while activating brown adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Cardiomiopatias/prevenção & controle , Gorduras na Dieta/efeitos adversos , Brometo de Piridostigmina/farmacologia , Nervo Vago/fisiopatologia , Tecido Adiposo/patologia , Tecido Adiposo/fisiopatologia , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Gorduras na Dieta/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Proteínas Musculares/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Nervo Vago/metabolismo , Nervo Vago/patologia
16.
J Mol Cell Cardiol ; 107: 1-12, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28395930

RESUMO

The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca2+. Protein-protein interactions were assessed by immunoprecipitation. Ca2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca2+ and the release of intracellular Ca2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca2+]cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new inhibitor for suppressing [Ca2+]cyt overload.


Assuntos
Inflamação/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Trocador de Sódio e Cálcio/genética , Canais de Cátion TRPC/genética , Fator de Necrose Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Apoptose/genética , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Homeostase/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Receptores de Inositol 1,4,5-Trifosfato/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , RNA Interferente Pequeno/genética , Trocador de Sódio e Cálcio/química , Canais de Cátion TRPC/química
17.
J Cell Mol Med ; 21(1): 58-71, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491814

RESUMO

Mitochondrial dynamics-fission and fusion-are associated with ischaemic heart disease (IHD). This study explored the protective effect of vagal nerve stimulation (VNS) against isoproterenol (ISO)-induced myocardial ischaemia in a rat model and tested whether VNS plays a role in preventing disorders of mitochondrial dynamics and function. Isoproterenol not only caused cardiac injury but also increased the expression of mitochondrial fission proteins [dynamin-related peptide1 (Drp1) and mitochondrial fission protein1 (Fis-1)) and decreased the expression of fusion proteins (optic atrophy-1 (OPA1) and mitofusins1/2 (Mfn1/2)], thereby disrupting mitochondrial dynamics and leading to increase in mitochondrial fragments. Interestingly, VNS restored mitochondrial dynamics through regulation of Drp1, Fis-1, OPA1 and Mfn1/2; enhanced ATP content and mitochondrial membrane potential; reduced mitochondrial permeability transition pore (MPTP) opening; and improved mitochondrial ultrastructure and size. Furthermore, VNS reduced the size of the myocardial infarction and ameliorated cardiomyocyte apoptosis and cardiac dysfunction induced by ISO. Moreover, VNS activated AMP-activated protein kinase (AMPK), which was accompanied by phosphorylation of Ca2+ /calmodulin-dependent protein kinase kinase ß (CaMKKß) during myocardial ischaemia. Treatment with subtype-3 of muscarinic acetylcholine receptor (M3 R) antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide or AMPK inhibitor Compound C abolished the protective effects of VNS on mitochondrial dynamics and function, suggesting that M3 R/CaMKKß/AMPK signalling are involved in mediating beneficial effects of VNS. This study demonstrates that VNS modulates mitochondrial dynamics and improves mitochondrial function, possibly through the M3 R/CaMKKß/AMPK pathway, to attenuate ISO-induced cardiac damage in rats. Targeting mitochondrial dynamics may provide a novel therapeutic strategy in IHD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Isoproterenol/farmacologia , Dinâmica Mitocondrial/fisiologia , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Apoptose/fisiologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Traumatismo por Reperfusão Miocárdica/metabolismo , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Estimulação do Nervo Vago/métodos
18.
J Cell Mol Med ; 21(9): 2106-2116, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28296184

RESUMO

Cardiac hypertrophy is associated with autonomic imbalance, characterized by enhanced sympathetic activity and withdrawal of parasympathetic control. Increased parasympathetic function improves ventricular performance. However, whether pyridostigmine, a reversible acetylcholinesterase inhibitor, can offset cardiac hypertrophy induced by pressure overload remains unclear. Hence, this study aimed to determine whether pyridostigmine can ameliorate pressure overload-induced cardiac hypertrophy and identify the underlying mechanisms. Rats were subjected to either sham or constriction of abdominal aorta surgery and treated with or without pyridostigmine for 8 weeks. Vagal activity and cardiac function were determined using PowerLab. Cardiac hypertrophy was evaluated using various histological stains. Protein markers for cardiac hypertrophy were quantitated by Western blot and immunoprecipitation. Pressure overload resulted in a marked reduction in vagal discharge and a profound increase in cardiac hypertrophy index and cardiac dysfunction. Pyridostigmine increased the acetylcholine levels by inhibiting acetylcholinesterase in rats with pressure overload. Pyridostigmine significantly attenuated cardiac hypertrophy based on reduction in left ventricular weight/body weight, suppression of the levels of atrial natriuretic peptide, brain natriuretic peptide and ß-myosin heavy chain, and a reduction in cardiac fibrosis. These effects were accompanied by marked improvement of cardiac function. Additionally, pyridostigmine inhibited the CaN/NFAT3/GATA4 pathway and suppressed Orai1/STIM1 complex formation. In conclusion, pressure overload resulted in cardiac hypertrophy, cardiac dysfunction and a significant reduction in vagal discharge. Pyridostigmine attenuated cardiac hypertrophy and improved cardiac function, which was related to improved cholinergic transmission efficiency (decreased acetylcholinesterase and increased acetylcholine), inhibition of the CaN/NFAT3/GATA4 pathway and suppression of the interaction of Orai1/STIM1.


Assuntos
Calcineurina/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Pressão , Brometo de Piridostigmina/administração & dosagem , Brometo de Piridostigmina/uso terapêutico , Transdução de Sinais , Animais , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/fisiopatologia , Fator de Transcrição GATA4/metabolismo , Testes de Função Cardíaca , Hemodinâmica/efeitos dos fármacos , Masculino , Fatores de Transcrição NFATC/metabolismo , Proteína ORAI1/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Molécula 1 de Interação Estromal/metabolismo , Fatores de Tempo , Nervo Vago/efeitos dos fármacos , Nervo Vago/patologia
19.
Clin Exp Pharmacol Physiol ; 44(12): 1192-1200, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28732106

RESUMO

It is well-accepted that inflammation plays an important role in the development of cardiac remodelling and that therapeutic approaches targeting inflammation can inhibit cardiac remodelling. Although a large amount of evidence indicates that activation of α7 nicotinic acetylcholine receptor (α7nAChR) causes an anti-inflammatory effect, the role of α7nAChR in cardiac remodelling and the underlying mechanism have not been established. To investigate the effect of the specific α7nAChR agonist, PNU282987, on cardiac remodelling induced by isoproterenol (ISO 60 mg/kg per day) in mice, the cardiomyocyte cross-sectional area (CSA) and collagen volume fraction were evaluated by hematoxylin and eosin (HE) and Masson staining, respectively. Cardiac function and ventricular wall thickness were measured by echocardiography. The protein expressions of collagen I, matrix metalloproteinase 9 (MMP-9), transforming growth factor ß1 (TGF-ß1), and Smad3 were analyzed by Western blot. ISO-induced cardiac hypertrophy, characterized by an increase in the heart weight/body weight ratio, CSA and ventricular wall thickness. Moreover, cardiac fibrosis indices, such as collagen volume fraction, MMP-9 and collagen I protein expression, were also increased by ISO. PNU282987 not only attenuated cardiac hypertrophy but also decreased the cardiac fibrosis induced by ISO. Furthermore, PNU282987 suppressed TGF-ß1 protein expression and the phosphorylation of Smad3 induced by ISO. In conclusion, PNU282987 ameliorated the cardiac remodelling induced by ISO, which may be related to the TGF-ß1/Smad3 pathway. These data imply that the α7nAChR may represent a novel therapeutic target for cardiac remodelling in many cardiovascular diseases.


Assuntos
Benzamidas/uso terapêutico , Compostos Bicíclicos com Pontes/uso terapêutico , Cardiomegalia/tratamento farmacológico , Agonistas Nicotínicos/uso terapêutico , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Benzamidas/administração & dosagem , Compostos Bicíclicos com Pontes/administração & dosagem , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Miocárdio/metabolismo , Miocárdio/patologia , Agonistas Nicotínicos/administração & dosagem , Transdução de Sinais
20.
Sheng Li Xue Bao ; 69(5): 579-586, 2017 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-29063106

RESUMO

Ischemic heart disease (IHD) is the life-threatening cardiovascular disease. Mitochondria have emerged as key participants and regulators of cellular energy demands and signal transduction. Mitochondrial quality is controlled by a number of coordinated mechanisms including mitochondrial fission, fusion and mitophagy, which plays an important role in maintaining healthy mitochondria and cardiac function. Recently, dysfunction of each process in mitochondrial quality control has been observed in the ischemic hearts. This review describes the mechanism of mitochondrial dynamics and mitophagy as well as its performance linked to myocardial ischemia. Moreover, in combination with our study, we will discuss the effect of vagal nerve on mitochondria in cardio-protection.


Assuntos
Mitocôndrias/fisiologia , Isquemia Miocárdica/fisiopatologia , Nervo Vago/fisiologia , Animais , Dinâmica Mitocondrial , Mitofagia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA