Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703775

RESUMO

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Assuntos
Glioblastoma , Glucose , Histonas , Macrófagos , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , Histonas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Glucose/metabolismo , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Interleucina-10/metabolismo , Glicólise , Microglia/metabolismo , Microglia/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tolerância Imunológica
2.
Immunity ; 57(5): 1124-1140.e9, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38636522

RESUMO

Signaling through Notch receptors intrinsically regulates tumor cell development and growth. Here, we studied the role of the Notch ligand Jagged2 on immune evasion in non-small cell lung cancer (NSCLC). Higher expression of JAG2 in NSCLC negatively correlated with survival. In NSCLC pre-clinical models, deletion of Jag2, but not Jag1, in cancer cells attenuated tumor growth and activated protective anti-tumor T cell responses. Jag2-/- lung tumors exhibited higher frequencies of macrophages that expressed immunostimulatory mediators and triggered T cell-dependent anti-tumor immunity. Mechanistically, Jag2 ablation promoted Nr4a-mediated induction of Notch ligands DLL1/4 on cancer cells. DLL1/4-initiated Notch1/2 signaling in macrophages induced the expression of transcription factor IRF4 and macrophage immunostimulatory functionality. IRF4 expression was required for the anti-tumor effects of Jag2 deletion in lung tumors. Antibody targeting of Jagged2 inhibited tumor growth and activated IRF4-driven macrophage-mediated anti-tumor immunity. Thus, Jagged2 orchestrates immunosuppressive systems in NSCLC that can be overcome to incite macrophage-mediated anti-tumor immunity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fatores Reguladores de Interferon , Proteína Jagged-2 , Neoplasias Pulmonares , Camundongos Knockout , Macrófagos Associados a Tumor , Proteína Jagged-2/metabolismo , Proteína Jagged-2/genética , Proteína Jagged-2/imunologia , Animais , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Camundongos , Humanos , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Transdução de Sinais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Receptores Notch/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Evasão Tumoral/imunologia
3.
Immunity ; 56(11): 2570-2583.e6, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37909039

RESUMO

Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.


Assuntos
Carcinoma , Imunoglobulina A , Humanos , Imunoglobulina A/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Citoplasma/metabolismo
4.
Immunity ; 55(1): 115-128.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021053

RESUMO

The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-ß-mediated repression of SATB1 enhanced Tfh differentiation of human T cells. Mechanistically, high Icos expression in Satb1-/- CD4+ T cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses in vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ T cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ T cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-ß-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.


Assuntos
Centro Germinativo/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Estruturas Linfoides Terciárias/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Inativação Gênica , Genótipo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fator de Crescimento Transformador beta/genética
5.
Immunity ; 54(6): 1154-1167.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33979578

RESUMO

Blockade of the inhibitory receptor TIM-3 shows efficacy in cancer immunotherapy clinical trials. TIM-3 inhibits production of the chemokine CXCL9 by XCR1+ classical dendritic cells (cDC1), thereby limiting antitumor immunity in mammary carcinomas. We found that increased CXCL9 expression by splenic cDC1s upon TIM-3 blockade required type I interferons and extracellular DNA. Chemokine expression as well as combinatorial efficacy of TIM-3 blockade and paclitaxel chemotherapy were impaired by deletion of Cgas and Sting. TIM-3 blockade increased uptake of extracellular DNA by cDC1 through an endocytic process that resulted in cytoplasmic localization. DNA uptake and efficacy of TIM-3 blockade required DNA binding by HMGB1, while galectin-9-induced cell surface clustering of TIM-3 was necessary for its suppressive function. Human peripheral blood cDC1s also took up extracellular DNA upon TIM-3 blockade. Thus, TIM-3 regulates endocytosis of extracellular DNA and activation of the cytoplasmic DNA sensing cGAS-STING pathway in cDC1s, with implications for understanding the mechanisms underlying TIM-3 immunotherapy.


Assuntos
DNA/metabolismo , Células Dendríticas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais/fisiologia , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Citoplasma/metabolismo , Endocitose/fisiologia , Feminino , Células HEK293 , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL
6.
Nature ; 591(7850): 464-470, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536615

RESUMO

Most ovarian cancers are infiltrated by prognostically relevant activated T cells1-3, yet exhibit low response rates to immune checkpoint inhibitors4. Memory B cell and plasma cell infiltrates have previously been associated with better outcomes in ovarian cancer5,6, but the nature and functional relevance of these responses are controversial. Here, using 3 independent cohorts that in total comprise 534 patients with high-grade serous ovarian cancer, we show that robust, protective humoral responses are dominated by the production of polyclonal IgA, which binds to polymeric IgA receptors that are universally expressed on ovarian cancer cells. Notably, tumour B-cell-derived IgA redirects myeloid cells against extracellular oncogenic drivers, which causes tumour cell death. In addition, IgA transcytosis through malignant epithelial cells elicits transcriptional changes that antagonize the RAS pathway and sensitize tumour cells to cytolytic killing by T cells, which also contributes to hindering malignant progression. Thus, tumour-antigen-specific and -antigen-independent IgA responses antagonize the growth of ovarian cancer by governing coordinated tumour cell, T cell and B cell responses. These findings provide a platform for identifying targets that are spontaneously recognized by intratumoural B-cell-derived antibodies, and suggest that immunotherapies that augment B cell responses may be more effective than approaches that focus on T cells, particularly for malignancies that are resistant to checkpoint inhibitors.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoglobulina A/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Linfócitos T Citotóxicos/imunologia , Transcitose , Especificidade de Anticorpos , Antígenos CD/imunologia , Linhagem Celular , Progressão da Doença , Feminino , Humanos , Neoplasias Ovarianas/prevenção & controle , Receptores Fc/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Transcitose/imunologia , Microambiente Tumoral/imunologia
7.
J Immunol ; 212(4): 737-747, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169329

RESUMO

Epigenetic regulation plays a crucial role in the development and progression of cancer, including the regulation of antitumor immunity. The reversible nature of epigenetic modifications offers potential therapeutic avenues for cancer treatment. In particular, histone deacetylase (HDAC) inhibitors (HDACis) have been shown to promote antitumor T cell immunity by regulating myeloid cell types, enhancing tumor Ag presentation, and increasing expression of chemokines. HDACis are currently being evaluated to determine whether they can increase the response rate of immune checkpoint inhibitors in cancer patients. Although the potential direct effect of HDACis on T cells likely impacts antitumor immunity, little is known about how HDAC inhibition alters the transcriptomic profile of T cells. In this article, we show that two clinical-stage HDACis profoundly impact gene expression and signaling networks in CD8+ and CD4+ T cells. Specifically, HDACis promoted T cell effector function by enhancing expression of TNF-α and IFN-γ and increasing CD8+ T cell cytotoxicity. Consistently, in a murine tumor model, HDACis led to enrichment of CD8+ T cell subsets with high expression of effector molecules (Prf1, Ifng, Gzmk, and Grmb) but also molecules associated with T cell exhaustion (Tox, Pdcd1, Lag3, and Havcr2). HDACis further generated a tumor microenvironment dominated by myeloid cells with immune suppressive signatures. These results indicate that HDACis directly and favorably augment T cell effector function but also increase their exhaustion signal in the tumor microenvironment, which may add a layer of complexity for achieving clinical benefit in combination with immune checkpoint inhibitors.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Epigênese Genética , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linfócitos T CD8-Positivos , Expressão Gênica , Microambiente Tumoral
8.
Am J Hum Genet ; 109(1): 116-135, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34965383

RESUMO

The high-grade serous ovarian cancer (HGSOC) risk locus at chromosome 1p34.3 resides within a frequently amplified genomic region signifying the presence of an oncogene. Here, we integrate in silico variant-to-function analysis with functional studies to characterize the oncogenic potential of candidate genes in the 1p34.3 locus. Fine mapping of genome-wide association statistics identified candidate causal SNPs local to H3K27ac-demarcated enhancer regions that exhibit allele-specific binding for CTCF in HGSOC and normal fallopian tube secretory epithelium cells (FTSECs). SNP risk associations colocalized with eQTL for six genes (DNALI1, GNL2, RSPO1, SNIP1, MEAF6, and LINC01137) that are more highly expressed in carriers of the risk allele, and three (DNALI1, GNL2, and RSPO1) were upregulated in HGSOC compared to normal ovarian surface epithelium cells and/or FTSECs. Increased expression of GNL2 and MEAF6 was associated with shorter survival in HGSOC with 1p34.3 amplifications. Despite its activation of ß-catenin signaling, RSPO1 overexpression exerted no effects on proliferation or colony formation in our study of ovarian cancer and FTSECs. Instead, GNL2, MEAF6, and SNIP1 silencing impaired in vitro ovarian cancer cell growth. Additionally, GNL2 silencing diminished xenograft tumor formation, whereas overexpression stimulated proliferation and colony formation in FTSECs. GNL2 influences 60S ribosomal subunit maturation and global protein synthesis in ovarian cancer and FTSECs, providing a potential mechanism of how GNL2 upregulation might promote ovarian cancer development and mediate genetic susceptibility of HGSOC.


Assuntos
Cromossomos Humanos Par 1 , Cistadenocarcinoma Seroso/genética , Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Locos de Características Quantitativas , Alelos , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Sequenciamento de Cromatina por Imunoprecipitação , Cistadenocarcinoma Seroso/patologia , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Feminino , Proteínas de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Xenoenxertos , Humanos , Camundongos , Gradação de Tumores , Razão de Chances , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único , Prognóstico , Transcriptoma , População Branca
9.
Int J Cancer ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958227

RESUMO

In patients with non-small cell lung cancer (NSCLC), oncogenic variants present in <5% of cases are considered rare, the predominant of which include human epidermal growth factor receptor 2 (HER2) mutations, mesenchymal-epithelial transition (MET) alterations, c-ros oncogene 1 (ROS1) rearrangements, rearrangement during transfection (RET) fusions, v-raf mouse sarcoma virus oncogene homolog B1 (BRAF) mutations, and neurotrophic troponin receptor kinase (NTRK) fusions. Brain metastases (BMs) occur in approximately 10%-50% of patients with NSCLC harboring rare genetic variants. The recent advent of small-molecule tyrosine kinase inhibitors and macromolecular antibody-drug conjugates (ADCs) has conferred marked survival benefits to patients with NSCLC harboring rare driver alterations. Despite effective brain lesion control for most targeted agents and promising reports of intracranial remission associated with novel ADCs, BM continues to be a major therapeutic challenge. This review discusses the recent advances in the treatment of NSCLC with rare genetic variants and BM, with a particular focus on intracranial efficacy, and explores future perspectives on how best to treat these patients.

10.
Cancer Immunol Immunother ; 73(6): 111, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668781

RESUMO

The increase in the detection rate of synchronous multiple primary lung cancer (MPLC) has posed remarkable clinical challenges due to the limited understanding of its pathogenesis and molecular features. Here, comprehensive comparisons of genomic and immunologic features between MPLC and solitary lung cancer nodule (SN), as well as different lesions of the same patient, were performed. Compared with SN, MPLC displayed a lower rate of EGFR mutation but higher rates of BRAF, MAP2K1, and MTOR mutation, which function exactly in the upstream and downstream of the same signaling pathway. Considerable heterogeneity in T cell receptor (TCR) repertoire exists among not only different patients but also among different lesions of the same patient. Invasive lesions of MPLC exhibited significantly higher TCR diversity and lower TCR expansion than those of SN. Intriguingly, different lesions of the same patient always shared a certain proportion of TCR clonotypes. Significant clonal expansion could be observed in shared TCR clonotypes, particularly in those existing in all lesions of the same patient. In conclusion, this study provided evidences of the distinctive mutational landscape, activation of oncogenic signaling pathways, and TCR repertoire in MPLC as compared with SN. The significant clonal expansion of shared TCR clonotypes demonstrated the existence of immune commonality among different lesions of the same patient and shed new light on the individually tailored precision therapy for MPLC.


Assuntos
Neoplasias Pulmonares , Mutação , Neoplasias Primárias Múltiplas , Receptores de Antígenos de Linfócitos T , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias Primárias Múltiplas/imunologia , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
11.
FASEB J ; 37(11): e23273, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874265

RESUMO

N6-methyladenosine (m6A) plays a crucial role in many bioprocesses across species, but its function in granulosa cells during oocyte maturation is not well understood in animals, especially domestic animals. We observed an increase in m6A methyltransferase-like 3 (METTL3) in granulosa cells during oocyte maturation in Haimen goats. Our results showed that knockdown of METTL3 disrupted the cell cycle in goat granulosa cells, leading to aggravated cell apoptosis and inhibition of cell proliferation and hormone secretion. Mechanistically, METTL3 may regulate the cell cycle in goat granulosa cells by mediating Aurora kinase B (AURKB) mRNA degradation in an m6A-YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) manner and participating in AURKB transcription via the Cyclin D1 (CCND1)-Retinoblastoma protein (RB)-E2F transcription factor 1 (E2F1) pathway. Overall, our study highlights the essential role of METTL3 in granulosa cells during oocyte maturation in Haimen goats. These findings provide a theoretical basis and technical means for understanding how RNA methylation participates in oocyte maturation through granulosa cells.


Assuntos
Cabras , Metiltransferases , Animais , Feminino , Metiltransferases/genética , Metiltransferases/metabolismo , Cabras/metabolismo , Aurora Quinase B , Ciclina D1/genética , Ciclo Celular
12.
FASEB J ; 37(11): e23212, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773760

RESUMO

As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.


Assuntos
MicroRNAs , Zearalenona , Animais , Feminino , Zearalenona/metabolismo , Zearalenona/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Zea mays/genética , Zea mays/metabolismo , MicroRNAs/metabolismo , Cabras/metabolismo , Estresse Oxidativo , Transdução de Sinais
13.
PLoS Comput Biol ; 19(1): e1010815, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689467

RESUMO

The phenotypic efficacy of somatic copy number alterations (SCNAs) stems from their incidence per base pair of the genome, which is orders of magnitudes greater than that of point mutations. One mitotic event stands out in its potential to significantly change a cell's SCNA burden-a chromosome missegregation. A stochastic model of chromosome mis-segregations has been previously developed to describe the evolution of SCNAs of a single chromosome type. Building upon this work, we derive a general deterministic framework for modeling missegregations of multiple chromosome types. The framework offers flexibility to model intra-tumor heterogeneity in the SCNAs of all chromosomes, as well as in missegregation- and turnover rates. The model can be used to test how selection acts upon coexisting karyotypes over hundreds of generations. We use the model to calculate missegregation-induced population extinction (MIE) curves, that separate viable from non-viable populations as a function of their turnover- and missegregation rates. Turnover- and missegregation rates estimated from scRNA-seq data are then compared to theoretical predictions. We find convergence of theoretical and empirical results in both the location of MIE curves and the necessary conditions for MIE. When a dependency of missegregation rate on karyotype is introduced, karyotypes associated with low missegregation rates act as a stabilizing refuge, rendering MIE impossible unless turnover rates are exceedingly high. Intra-tumor heterogeneity, including heterogeneity in missegregation rates, increases as tumors progress, rendering MIE unlikely.


Assuntos
Instabilidade Cromossômica , Neoplasias , Humanos , Cariotipagem , Cariótipo , Neoplasias/genética , Variações do Número de Cópias de DNA/genética
14.
Environ Sci Technol ; 58(8): 3830-3837, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353041

RESUMO

Ions containing iodine atoms at the vapor-aqueous solution interfaces critically affect aerosol growth and atmospheric chemistry due to their complex chemical nature and multivalency. While the surface propensity of iodide ions has been intensely discussed in the context of the Hofmeister series, the stability of various ions containing iodine atoms at the vapor-water interface has been debated. Here, we combine surface-specific sum-frequency generation (SFG) vibrational spectroscopy with ab initio molecular dynamics simulations to examine the extent to which iodide ions cover the aqueous surface. The SFG probe of the free O-D stretch mode of heavy water indicates that the free O-D group density decreases drastically at the interface when the bulk NaI concentration exceeds ∼2 M. The decrease in the free O-D group density is attributed to the spontaneous appearance of triiodide that covers the topmost interface rather than to the surface adsorption of iodide. This finding demonstrates that iodide is not surface-active, yet the highly surface-active triiodide is generated spontaneously at the water-air interface, even under dark and oxygen-free conditions. Our study provides an important first step toward clarifying iodine chemistry and pathways for aerosol formation.


Assuntos
Iodetos , Iodo , Água/química , Íons/química , Gases , Aerossóis
15.
Curr Oncol Rep ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837106

RESUMO

PURPOSE OF REVIEW: This review sought to define the emerging roles of urinary tumor DNA (utDNA) for diagnosis, monitoring, and treatment of bladder cancer. Building from early landmark studies the focus is on recent studies, highlighting how utDNA could aid personalized care. RECENT FINDINGS: Recent research underscores the potential for utDNA to be the premiere biomarker in bladder cancer due to the constant interface between urine and tumor. Many studies find utDNA to be more informative than other biomarkers in bladder cancer, especially in early stages of disease. Points of emphasis include superior sensitivity over traditional urine cytology, broad genomic and epigenetic insights, and the potential for non-invasive, real-time analysis of tumor biology. utDNA shows promise for improving all phases of bladder cancer care, paving the way for personalized treatment strategies. Building from current research, future comprehensive clinical trials will validate utDNA's clinical utility, potentially revolutionizing bladder cancer management.

17.
J Nanobiotechnology ; 22(1): 110, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481281

RESUMO

BACKGROUND: Breast cancer ranks first among malignant tumors, of which triple-negative breast cancer (TNBC) is characterized by its highly invasive behavior and the worst prognosis. Timely diagnosis and precise treatment of TNBC are substantially challenging. Abnormal tumor vessels play a crucial role in TNBC progression and treatment. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis, while effective NO delivery can normalize the tumor vasculature. Accordingly, we have proposed here a tumor vascular microenvironment remodeling strategy based on NO-induced vessel normalization and extracellular matrix collagen degradation with multimodality imaging-guided nanoparticles against TNBC called DNMF/PLGA. RESULTS: Nanoparticles were synthesized using a chemotherapeutic agent doxorubicin (DOX), a NO donor L-arginine (L-Arg), ultrasmall spinel ferrites (MnFe2O4), and a poly (lactic-co-glycolic acid) (PLGA) shell. Nanoparticle distribution in the tumor was accurately monitored in real-time through highly enhanced magnetic resonance imaging and photoacoustic imaging. Near-infrared irradiation of tumor cells revealed that MnFe2O4 catalyzes the production of a large amount of reactive oxygen species (ROS) from H2O2, resulting in a cascade catalysis of L-Arg to trigger NO production in the presence of ROS. In addition, DOX activates niacinamide adenine dinucleotide phosphate oxidase to generate and supply H2O2. The generated NO improves the vascular endothelial cell integrity and pericellular contractility to promote vessel normalization and induces the activation of endogenous matrix metalloproteinases (mainly MMP-1 and MMP-2) so as to promote extravascular collagen degradation, thereby providing an auxiliary mechanism for efficient nanoparticle delivery and DOX penetration. Moreover, the chemotherapeutic effect of DOX and the photothermal effect of MnFe2O4 served as a chemo-hyperthermia synergistic therapy against TNBC. CONCLUSION: The two therapeutic mechanisms, along with an auxiliary mechanism, were perfectly combined to enhance the therapeutic effects. Briefly, multimodality image-guided nanoparticles provide a reliable strategy for the potential application in the fight against TNBC.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Óxido Nítrico , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Doxorrubicina/farmacologia , Fototerapia/métodos , Colágeno , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Biomed Chromatogr ; 38(6): e5865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514246

RESUMO

The aim of this work was to explore the differences between various pharmaceutical processes in combined solutions of a single decoction (QGHBY) and a combined decoction (QGHJY) of Qi-Ge decoction from the perspective of chemical composition changes, so as to further guide the clinical application of drugs. A combined solution of a single decoction and a combined decoction of Astragali Radix, Puerariae Lobatae Radix and Citri Reticulatae Chachiensis Pericarpium was prepared with the same technological parameters. The chemical components of the two were detected and identified based on UPLC-Q-TOF/MS, and the different components were determined by principal component analysis. Eighty-eight compounds were identified in the pharmaceutical solution of Qi-Ge decoction. Principal component analysis revealed 11 different components of QGHBY and QGHJY with the conditions of Variable Importance in Projection (VIP) ≥ 1, fold change ≥ 2 and p < 0.05, among which hesperidin, hesperitin, isosinensetin, sinensetin and 5-demethylnobiletin were the components of Citri Reticulatae Chachiensis Pericarpium. The levels of these 11 different components in QGHJY were higher than those of QGHBY. The combined decoction is beneficial for the dissolution of flavonoids and other chemical components, and there is a significant difference in the content of chemical components between modern herbal concentrate granules and traditional decoctions.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Análise de Componente Principal , Flavonoides/análise , Flavonoides/química
19.
Angew Chem Int Ed Engl ; 63(20): e202319503, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478726

RESUMO

Graphene, a transparent two-dimensional conductive material, has brought extensive new perspectives and prospects to various aqueous technological systems, such as desalination membranes, chemical sensors, energy storage, and energy conversion devices. Yet, the molecular-level details of graphene in contact with aqueous electrolytes, such as water orientation and hydrogen bond structure, remain elusive or controversial. Here, we employ surface-specific heterodyne-detected sum-frequency generation (HD-SFG) vibrational spectroscopy to re-examine the water molecular structure at a freely suspended graphene/water interface. We compare the response from the air/graphene/water system to that from the air/water interface. Our results indicate that the χ y y z 2 ${{\chi }_{yyz}^{\left(2\right)}}$ spectrum recorded from the air/graphene/water system arises from the topmost 1-2 water layers in contact with the graphene, with the graphene itself not generating a significant SFG response. Compared to the air/water interface response, the presence of monolayer graphene weakly affects the interfacial water. Graphene weakly affects the dangling O-H group, lowering its frequency through its interaction with the graphene sheet, and has a very small effect on the hydrogen-bonded O-H group. Molecular dynamics simulations confirm our experimental observation. Our work provides molecular insight into the interfacial structure at a suspended graphene/water interface, relevant to various technological applications of graphene.

20.
BMC Bioinformatics ; 24(1): 164, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095442

RESUMO

BACKGROUND: Massively parallel sequencing includes many liquid handling steps which introduce the possibility of sample swaps, mixing, and duplication. The unique profile of inherited variants in human genomes allows for comparison of sample identity using sequence data. A comparison of all samples vs. each other (all vs. all) provides both identification of mismatched samples and the possibility of resolving swapped samples. However, all vs. all comparison complexity grows as the square of the number of samples, so efficiency becomes essential. RESULTS: We have developed a tool for fast all vs. all genotype comparison using low level bitwise operations built into the Perl programming language. Importantly, we have also developed a complete workflow allowing users to start with either raw FASTQ sequence files, aligned BAM files, or genotype VCF files and automatically generate comparison metrics and summary plots. The tool is freely available at https://github.com/teerjk/TimeAttackGenComp/ . CONCLUSIONS: A fast and easy to use method for genotype comparison as described here is an important tool to ensure high quality and robust results in sequencing studies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Humanos , Fluxo de Trabalho , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , DNA , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA