Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274711

RESUMO

With the aim to systematically analyze the ambient relative humidity on the shrinkage strain of Engineered Geopolymer Composites (EGCs), this paper studied four variables (fly ash to ground granulated blast furnace slag mass ratio, alkali content, water-binder ratio, and fiber volume content) though orthogonal experimental design and three different relative humidity values (30%, 60%, and 100% RH). The results indicated that, for EGC specimens under 30% RH and 60% RH, the decrease in slag content and increase in alkali content both resulted in greater drying shrinkage. The addition of fibers effectively reduced the shrinkage strain, while a minor impact on shrinkage was presented by the W/B ratio. The first and second key factors affecting the drying shrinkage strain were the FA/GGBS ratio and the alkali content. The optimal ratio of FA/GGBS, alkali content, and fiber volume fraction were 0/100, 4%, and 1.5%, respectively. Dring shrinkage strain was decreased with the increase in ambient relative humidity. Compared with the shrinkage strain under 30% RH, the reduction in shrinkage strain under 60% RH and 100%RH was up to 46.1% and 107.5%, respectively. At last, a relationship between shrinkage strain and curing age under 30% and 60% RH was established with a fitting degree from 0.9492 to 0.9987, while no clear relationship was presented under 100% RH. The results in this paper provide a practical method for solving the shrinkage problem of EGCs.

2.
Materials (Basel) ; 16(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687692

RESUMO

With the development of society, the demand for cement-based composites is increasing day by day. Cement production significantly increases CO2 emissions. These emissions are reduced when high volumes of cement are replaced. The consideration of sustainable development has prompted people to search for new cement substitutes. The lignocellulosic biomass ash obtained from burning lignocellulosic biomass contains a large number of active oxides. If lignocellulosic biomass ash is used as a partial cement substitute, it can effectively solve the high emissions problem of cement-based composites. This review summarizes the physicochemical properties of lignocellulosic biomass ashes and discusses their effects on the workability, mechanical properties, and durability (water absorption, acid resistance, etc.) of cement-based composites. It is found that appropriate treatments on lignocellulosic biomass ashes are beneficial to their application in cement-based composites. Meanwhile, the issues with their application are also pointed out.

3.
Microbiol Res ; 170: 95-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25267487

RESUMO

Bacterial fruit blotch (BFB) was a serious threat to cucurbitaceae crops. It was caused by the gram-negative bacterium Acidovorax avenae subsp. citrulli. Two hundred strains, which have the potential in controlling plant diseases in our laboratory's biocontrol strain library, were employed to this research to screen some antagonistic bacteria, which can efficiently control bacterial fruit blotch disease. Based on the results of antagonistic activity experiments, greenhouse tests and field trials, 5 of the test strains have high abilities to control BFB. One of the 5 bacteria strains has the highest potential to control BFB named 54. The biocontrol efficacy of 54 was up to 60%. To characterize the strain, we used series of methods to evaluate the bacterium, including morphology analysis, physiological biochemical test and biomolecular assay. We found that the bacterium 54 belongs to the species Bacillus amyloliquefaciens. The colonization test results showed that 54 had the highest colonization levels, and the density of the strain on leaves was up 10(5)colony forming units (CFU) per gram of leaf tissue. Our recent results show that B. amyloliquefaciens 54 can promote the plant growth due to raised the contents of available N, P, K and the leaf chlorophyll. The antagonistic bacterium 54 can significantly control the BF B by increasing the expression level of defense-related gene PR1 and the accumulation the hydrogen peroxide in the plant. The results of trail experiment was also verified this efficient results of bacterium. This is also the first report of B. amyloliquefaciens strain that is able to control BFB.


Assuntos
Antibiose , Bacillus , Agentes de Controle Biológico , Comamonadaceae , Doenças das Plantas/microbiologia , Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA