Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 613(7943): 274-279, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631650

RESUMO

The development of next-generation electronics requires scaling of channel material thickness down to the two-dimensional limit while maintaining ultralow contact resistance1,2. Transition-metal dichalcogenides can sustain transistor scaling to the end of roadmap, but despite a myriad of efforts, the device performance remains contact-limited3-12. In particular, the contact resistance has not surpassed that of covalently bonded metal-semiconductor junctions owing to the intrinsic van der Waals gap, and the best contact technologies are facing stability issues3,7. Here we push the electrical contact of monolayer molybdenum disulfide close to the quantum limit by hybridization of energy bands with semi-metallic antimony ([Formula: see text]) through strong van der Waals interactions. The contacts exhibit a low contact resistance of 42 ohm micrometres and excellent stability at 125 degrees Celsius. Owing to improved contacts, short-channel molybdenum disulfide transistors show current saturation under one-volt drain bias with an on-state current of 1.23 milliamperes per micrometre, an on/off ratio over 108 and an intrinsic delay of 74 femtoseconds. These performances outperformed equivalent silicon complementary metal-oxide-semiconductor technologies and satisfied the 2028 roadmap target. We further fabricate large-area device arrays and demonstrate low variability in contact resistance, threshold voltage, subthreshold swing, on/off ratio, on-state current and transconductance13. The excellent electrical performance, stability and variability make antimony ([Formula: see text]) a promising contact technology for transition-metal-dichalcogenide-based electronics beyond silicon.

2.
Nature ; 605(7908): 69-75, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508774

RESUMO

Two-dimensional transition-metal dichalcogenides (TMDs) are of interest for beyond-silicon electronics1,2. It has been suggested that bilayer TMDs, which combine good electrostatic control, smaller bandgap and higher mobility than monolayers, could potentially provide improvements in the energy-delay product of transistors3-5. However, despite advances in the growth of monolayer TMDs6-14, the controlled epitaxial growth of multilayers remains a challenge15. Here we report the uniform nucleation (>99%) of bilayer molybdenum disulfide (MoS2) on c-plane sapphire. In particular, we engineer the atomic terrace height on c-plane sapphire to enable an edge-nucleation mechanism and the coalescence of MoS2 domains into continuous, centimetre-scale films. Fabricated field-effect transistor (FET) devices based on bilayer MoS2 channels show substantial improvements in mobility (up to 122.6 cm2 V-1 s-1) and variation compared with FETs based on monolayer films. Furthermore, short-channel FETs exhibit an on-state current of 1.27 mA µm-1, which exceeds the 2028 roadmap target for high-performance FETs16.

3.
Nano Lett ; 24(20): 6183-6191, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728596

RESUMO

Two-dimensional (2D) materials are promising candidates for spintronic applications. Maintaining their atomically smooth interfaces during integration of ferromagnetic (FM) electrodes is crucial since conventional metal deposition tends to induce defects at the interfaces. Meanwhile, the difficulties in picking up FM metals with strong adhesion and in achieving conductance match between FM electrodes and spin transport channels make it challenging to fabricate high-quality 2D spintronic devices using metal transfer techniques. Here, we report a solvent-free magnetic electrode transfer technique that employs a graphene layer to assist in the transfer of FM metals. It also serves as part of the FM electrode after transfer for optimizing spin injection, which enables the realization of spin valves with excellent performance based on various 2D materials. In addition to two-terminal devices, we demonstrate that the technique is applicable for four-terminal spin valves with nonlocal geometry. Our results provide a promising future of realizing 2D spintronic applications using the developed magnetic electrode transfer technique.

4.
Small ; 20(12): e2308142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37984879

RESUMO

Hollow nanoreactors (HoNRs) have regarded as an attractive catalytic material for photocatalysis due to their exceptional capabilities in enhancing light harvesting, facilitating charge separation and transfer, and optimizing surface reactions. Developing novel HoNRs offers new options to realize controllable catalytic behavior. However, the catalytic mechanism of photocatalysis occurring in HoNRs has not yet been fully revealed. Against this backdrop, this review elaborates on three aspects: 1) the fundamental theoretical insights of HoNRs-driven photocatalytic kinetics; 2) structure-performance relationship of HoNRs to photocatalysis; 3) catalytic advantages of HoNRs in photocatalytic applications. Specifically, the review focuses on the fundamental theories of HoNRs for photocatalysis and their structural advantages for strengthening light scattering, promoting charge separation and transfer, and facilitating surface reaction kinetics, and the relationship between key structural parameters of HoNRs and their photocatalytic performance is in-depth discussed. Also, future prospects and challenges are proposed. It is anticipated that this review paper will pave the way for forthcoming investigations in the realm of HoNRs for photocatalysis.

5.
Small ; 20(26): e2310926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38239093

RESUMO

Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.

6.
Chemphyschem ; : e202400335, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807346

RESUMO

Vibrational-mode-selective modulation of electronic excitation is conducted with a synchronized femtosecond (fs) visible (vis) pulse and a picosecond (ps) infrared (IR) pulse. The mechanism of modulation of vibrational and vibronic relaxation behavior of excited state is investigated with ultrafast vis/IR, IR/IR, and vis-IR/IR transient spectroscopy, optical gating experiments and theoretical calculations. An organic molecule, 4'-(N,N-dimethylamino)-3-methoxyflavone (DMA3MHF) is chosen as the model system. Upon 1608 cm-1 excitation, the skeleton stretching vibration of DMA3MHF is energized, which can significantly change the shape of the absorption, facilitate the radiative decay and promote emission from vibrational excited states. As results, a remarkable enhancement and a slight blueshift in fluorescence are observed. The mode-selective modulation of electronic excitation is not limited in luminescence or photophysics. It is expected to be widely applicable in tuning many photochemical processes.

7.
Langmuir ; 40(20): 10776-10791, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728176

RESUMO

Fractured reservoirs are an important source of oil and gas energy. After depletion of production, the production capacity of this reservoir decreases rapidly. Effective profile control is needed to improve the sweep efficiency and reservoir heterogeneity. Foam can solve such problems, but its profile control mechanism is not fully understood. Based on this, this paper uses the level set method to study the microscale control mechanism of foam in fractured media. The results show that artificial fractures and high-permeability microfractures are tighter than natural fractures, the Jamin effect of foam is stronger, and the secondary foaming ability is better. Therefore, the plugging ability of foam to natural fractures is far less than that of foam to artificial fractures and high-permeability microfractures. The larger the fracture opening, the larger the foam volume and the smaller the flow rate. As the opening ratio increases gradually, the generated foam flows more to the natural fractures with a large opening, and the effect of foam blocking large fractures becomes worse. The diversion rate curves of different opening ratios show that the foam has a good profile control effect when the opening ratios are 4:1 and 2:1, and even the diversion rate overturns, while the profile control diversion effect is poor when the opening ratio is 10:1, so it cannot play an effective role in profile control. The foam shows the profile control process of preferentially plugging the high-permeability area and allowing more subsequent fluids to enter the low-permeability area. The research reveals the profile control mechanism of foam on fractured reservoirs from the micro level, which is the supplement and verification of relevant macro research and provides a theoretical basis for the efficient development of fractured reservoirs.

8.
J Phys Chem A ; 128(15): 2912-2922, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38572812

RESUMO

Mode-selective vibrational excitations to modify the electronic states of fluorescein dianion in methanol solutions are carried out with a femtosecond visible pulse synchronized with a tunable high-power, narrow-band picosecond infrared (IR) pulse. In this work, simultaneous intensity enhancement, peak blueshift, and line width broadening of fluorescence are observed in the visible/IR double resonance experiments. Comprehensive investigations on the modulation mechanism with scanning the vibrational excitation frequencies, tuning the time delay between the two excitation pulses, theoretical calculations, and nonlinear and linear spectroscopic measurements suggest that the fluorescence intensity enhancement is caused by the increase of the Franck-Condon factor induced by the vibrational excitations at the electronic ground state. Various enhancement effects are observed as vibrations initially excited by the IR photons relax to populate the vibrational modes of lower frequencies. The peak blueshift and line width broadening are caused by both increasing the Franck-Condon factors among different subensembles because of IR pre-excitation and the long-lived processes induced by the initial IR excitation. The results demonstrate that the fluorescence from the visible/IR double resonance experiments is not a simple sum frequency effect, and vibrational relaxations can produce profound effects modifying luminescence.

9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 342-350, 2024 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-38686416

RESUMO

Temporal interference (TI) as a new neuromodulation technique can be applied to non-invasive deep brain stimulation. In order to verify its effectiveness in the regulation of motor behavior in animals, this paper uses the TI method to focus the envelope electric field to the ventral posterior lateral nucleus (VPL) of the thalamus in the deep brain of mouse to regulate left- and right-turning motor behavior. The focusability of TI in the mouse VPL was analyzed by finite element method, and the focus area and volume were obtained by numerical calculation. A stimulator was used to generate TI current to stimulate the mouse VPL to verify the effectiveness of the TI stimulation method, and the accuracy of the focus location was further determined by c-Fos immunofluorescence experiments. The results showed that the electric field generated by TI stimulation was able to focus on the VPL nuclei when the stimulation current reached 800 µA; the mouse were able to make corresponding left and right turns according to the stimulation position; and the c-Fos positive cell markers in the VPL nuclei increased significantly after stimulation. This study confirms the feasibility of TI in regulating animal motor behavior and provides a non-invasive stimulation method for brain tissue for animal robots.


Assuntos
Estimulação Encefálica Profunda , Atividade Motora , Proteínas Proto-Oncogênicas c-fos , Animais , Camundongos , Estimulação Encefálica Profunda/métodos , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Animal , Núcleos Ventrais do Tálamo/fisiologia , Análise de Elementos Finitos
10.
Angew Chem Int Ed Engl ; 63(13): e202318030, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38308534

RESUMO

The specific states of aggregation of metal atoms in sub-nanometer-sized gold clusters are related to the different quantum confinement volumes of electrons, leading to novel optical and electronic properties. These volumes can be tuned by changing the relative positions of the gold atoms to generate isomers. Studying the isomeric gold core and the electron coupling between the basic units is fundamentally important for nanoelectronic devices and luminescence; however, appropriate cases are lacking. In this study, the structure of the first staggered di-superatomic Au25 -S was solved using single-crystal X-ray diffraction. The optical properties of Au25 -S were studied by comparing with eclipsed Au25 -E. From Au25 -E to Au25 -S, changes in the electronic structures occurred, resulting in significantly different optical absorptions originating from the coupling between the two Au13 modules. Au25 -S shows a longer electron decay lifetime of 307.7 ps before populating the lowest triplet emissive state, compared to 1.29 ps for Au25 -E. The experimental and theoretical results show that variations in the geometric isomerism lead to distinct photophysical processes owing to isomerism-dependent electronic coupling. This study offers new insights into the connection between the geometric isomerism of nanosized building blocks and the optical properties of their assemblies, opening new possibilities for constructing function-specific nanomaterials.

11.
Small ; 19(50): e2304008, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632316

RESUMO

Nanoreactors, as a new class of materials with highly enriched and ordered pore channel structures, can achieve special catalytic effects by precisely identifying and controlling the molecular diffusion behavior within the ordered pore channel system. Nanoreactors-driven molecular diffusion within the ordered pore channels can be highly dependent on the local microenvironment in the nanoreactors' pore channel system. Although the diffusion process of molecules within the ordered pore channels of nanoreactors is crucial for the regulation of catalytic behaviors, it has not yet been as clearly elucidated as it deserves to be in this study. In this review, fundamental theory and measurement techniques for molecular diffusion in the pore channel system of nanoreactors are presented, structural regulation strategies of pore channel parameters for controlling molecular diffusion are discussed, and the effects of molecular diffusion in the pore channel system on catalytic reactivity and selectivity are further analyzed. This article attempts to further develop the underlying theory of molecular diffusion within the theoretical framework of nanoreactor-driven catalysis, and the proposed perspectives may contribute to the rational design of advanced catalytic materials and the precise control of complex catalytic kinetics.

12.
BMC Microbiol ; 23(1): 39, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765272

RESUMO

Probiotics are defined as live microbial food elements that are beneficial to human health. Lacticaseibacillus casei T1 was considered to have potential as a bioactive ingredient in functional foods, which was isolated from kurut. Previous research by our group proved that L. casei T1 could prevent inflammatory responses caused by Helicobacter pylori. This study aimed to investigate whether treatment with L. casei T1 resulted in a suppressive effect on H. pylori-induced oxidative stress and inflammatory responses. The results showed that treatment with L. casei T1 could relieve H. pylori-induced overexpression of inflammatory cytokines in GES-1 cells. Experiments in animals suggested that taking long-term L. casei T1 could reduce oxidative stress and inflammatory cytokines and improve H. pylori-induced gastric mucosal damage. Furthermore, taking L. casei T1 could increase the relative abundance of beneficial intestinal bacterium (Lachnospiraceae and Odoribacter) of H. pylori-infected mice and help in maintaining the balance of intestinal microflora.Collectively, L. casei T1 had certain degrees of therapeutic effect against H. pylori. In the future, it combined with antibiotics for H. pylori eradication deserves further study.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Lacticaseibacillus casei , Probióticos , Camundongos , Humanos , Animais , Lacticaseibacillus , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/prevenção & controle , Infecções por Helicobacter/microbiologia , Citocinas , Probióticos/farmacologia , Probióticos/uso terapêutico , Inflamação
13.
Helicobacter ; 28(6): e13016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37623311

RESUMO

BACKGROUND: Helicobacter pylori is one of the most common chronic bacterial infections. Active eradication of H. pylori infection is rare due to the fact that most infected patients are asymptomatic and the use of large amounts of antibiotics in eradication therapy leads to severe side effects. Urolithin B (UB) is an additional major intestinal metabolite of ellagic acid (EA), which has been shown to possess anti-inflammatory, antioxidant, and antiapoptotic biological activities. Preventing the incidence of H. pylori-related gastric disease and reducing the damage to the host by H. pylori is a current approach to control H. pylori infection. In this study, we explored the effect of UB on H. pylori infection. MATERIALS AND METHODS: The effects of UB on inflammation and oxidative stress induced by H. pylori in vivo and in vitro were investigated by qPCR, ELISA, HE staining, IHC staining, etc. RESULTS: UB reduced the adhesion and colonization of H. pylori and improved H. pylori-induced inflammation and oxidative stress in vivo and in vitro. Moreover, UB had better anti-inflammatory and antioxidant effects than clarithromycin (CLR) and metronidazole (MET). In addition to inhibiting the secretion of CagA, UB reduced tissue damage by H. pylori infection. CONCLUSIONS: UB was effective in improving damage caused by H. pylori.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Animais , Camundongos , Infecções por Helicobacter/microbiologia , Mucosa Gástrica/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Claritromicina/uso terapêutico , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Estresse Oxidativo , Inflamação/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Quimioterapia Combinada
14.
Nanotechnology ; 34(27)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37015219

RESUMO

Ferroelectric transistors hold great potential in low consumption devices. Due to the high film quality and clean system, two dimensional organic semiconductors are widely employed to fabricate high performance organic electronic devices and explore the modulation mechanism of the molecular packing on device performance. Here, we combine the ferroelectric hafnium oxide HfZrOxand two-dimensional molecular crystal 2,9-didecyldinaphtho[2,3-b:2',3'-f]thieno[3,2b]thiophene (C10-DNTT) with controllable layers to study the molecular layer modulation of ferroelectric organic thin-film transistors (OTFTs). The contact resistance, driving current and transconductance are directly affected by the additional access resistance across the upper molecular layers at the source/drain contact region. Simultaneously, the capacitance of Schottky junction related to the molecular layer thickness could effectively adjust the gate potential acting on the organic channel, further controlling the devices' subthreshold swing and transconductance efficiency. This work would promote the development of low voltage and high performance OTFTs.

15.
Phys Chem Chem Phys ; 25(17): 12342-12351, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37089106

RESUMO

Elucidating the mechanism of aggregation-induced emission (AIE) is a prerequisite for designing more AIE-gens. The diphenylethylene (DPE) featured molecules are one of the most important AIE-gens due to their propeller structure. Three representative DPE-featured AIE-gens, triphenylethylene, cis-stilbene, and trans-stilbene, are explored via ultrafast ultraviolet/infrared (UV/IR) spectroscopy and theoretical calculations. Both experimental and computational results suggest that readily crossing conical intersections (CIs) with flexible structural evolutions in solutions significantly reduces fluorescence, whereas crossing CIs is restricted because of high energy cost, and therefore no fast nonradiative decay can compete with spontaneous emission in solids. The mechanism also well explains the different emission quantum yields and interconversion ratios between cis-stilbene and trans-stilbene after photoexcitation.

16.
J Chem Phys ; 158(6): 064202, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792510

RESUMO

The aggregation morphologies of conjugated polymers in solutions and solid films are important for their optoelectronic applications. Due to the amorphous state of the polymers, it remains a great challenge to determine their conformations in either liquids or solids. Herein, a ps/fs synchronized 2D IR technique is applied to investigate the molecular conformations of a high-mobility n-type low-bandgap copolymer, N2200, dissolved in CHCl3 and CCl4, and in solid films cast from both solutions by the vibrational cross-angle method. In CCl4, the polymer forms more aggregates and folds more and the backbone dihedral angle of C-C(NDI)/C-S(Thiophene) of its average conformation is about 10° more distorted than that in CHCl3 and the most stable conformation for a free molecule. Anti-intuitively, the solid films cast from both solutions have the same molecular conformation, and the conformation is similar to that of the polar CHCl3 rather than the conformation of the less polar CCl4. The results imply that the interaction between the polymer backbones is probably stronger than its interaction with CCl4, which can naturally guide the rearrangement of polymer chains during the evaporation of solvent molecules. This work also implies that the balance and competition between the polymer/polymer interaction and the polymer/solvent interaction seem to be the dominant factors responsible for what morphology can form in a solid film cast from solution. It is not always true that different molecular conformations must exist in solid films grown from different solutions with different polarity or different extents of aggregates with different conformations.

17.
Angew Chem Int Ed Engl ; 62(3): e202213612, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36346146

RESUMO

As a novel class of catalytic materials, hollow nanoreactors offer new opportunities for improving catalytic performance owing to their higher controllability on molecular kinetic behavior. Nevertheless, to achieve controllable catalysis with specific purposes, the catalytic mechanism occurring inside hollow nanoreactors remains to be further understood. In this context, this Review presents a focused discussion about the basic concept of hollow nanoreactors, the underlying theory for hollow nanoreactor-driven kinetics, and the intrinsic correlation between key structural parameters of hollow nanoreactors and molecular kinetic behaviors. We aim to provide in-depth insights into understanding kinetics occurred within typical hollow nanoreactors. The perspectives proposed in this paper may contribute to the development of the fundamental theoretical framework of hollow nanoreactor-driven catalysis.


Assuntos
Nanotecnologia , Cinética , Catálise
18.
Small ; 18(32): e2201361, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760757

RESUMO

Rationally modulating the catalytic microenvironment is important for targeted induction of specific molecular behaviors to fulfill complicated catalytic purposes. Herein, a metal pre-chelating assisted assembly strategy is developed to facilely synthesize the hollow carbon spheres with ultrafine ruthenium clusters embedded in pore channels of the carbon shell (Ru@Shell-HCSs), which can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the efficient tandem hydrogenation of biomass-derived furfural toward 2-methylfuran. The channel-embedding structure is proved to confer the ultrafine ruthenium clusters with an electron-deficient property via a reinforced interfacial charge transfer mechanism, which prompts the hydrogenolysis of intermediate furfuryl alcohol during the tandem reaction, thus resulting in an enhanced 2-methylfuran generation. Meanwhile, lengthening the shell pore channel can offer reactant molecules with a prolonged diffusion path, and correspondingly a longer retention time in the channel, thereafter delivering an accelerated tandem hydrogenation progression. This paper aims to present a classic case that emphasizes the critical role of precisely controlling the catalytic microenvironment of the metal-loaded hollow nanoreactors in coping with the arduous challenges from multifunctional catalyst-driven complex tandem reactions.


Assuntos
Furaldeído , Rutênio , Carbono/química , Furaldeído/química , Hidrogenação , Nanotecnologia , Rutênio/química
19.
J Chem Phys ; 156(4): 044704, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105068

RESUMO

The Fermi level of graphene on different substrates usually changes significantly due to the interface difference between graphene and two-dimensional semiconductors. This feature opens many possibilities of manipulating optoelectronic devices by constructing graphene heterostructures through interface modification. Herein, we report the fabrication and optoelectronic response of an unconventional heterojunction device based on a graphene-MoSe2 hybrid interface. Different from the traditional three or more layered structure where the semiconductor is sandwiched between two electrodes, this device contains only two atomic layers: the MoSe2 layer serving as the photon absorber and the graphene layer functioning as the charge acceptor and both electrodes. This structure looks like short-circuited but shows an obvious photoelectric response, which is aided by electron transfers from MoSe2 to graphene. The photocurrent generation is explored quantitatively with electronic dynamics of graphene aided with ultrafast measurements. The two-layered architecture simplifies the fabrication of atomic-thick optoelectronic devices, allowing the as-grown semiconductors to be directly used and eliminating the damage-prone transfer process.

20.
J Chem Phys ; 156(14): 144302, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428375

RESUMO

Conical intersections (CIs) provide effective fast nonradiative decay pathways for electronic excitation, which can significantly influence molecular photoluminescence properties. However, in many cases, crossing a CI does not have direct observables, making studies of CIs experimentally challenging. Herein, the theoretically predicted double CIs by cis-trans twisting and cyclization in tetraphenyl ethylene, a well-known aggregation-induced emission molecule, are investigated with excitation dependent ultrafast UV/IR spectroscopy and fluorescence. Both the fluorescence quantum yield and the efficiency of cyclization are found to be smaller with a shorter excitation wavelength. An abrupt change occurs at about 300-310 nm. The results imply that crossing the twisting CI has a larger barrier than the cyclization CI, and the cis-trans twisting motion is probably involved with large solvation reorganization.


Assuntos
Análise Espectral , Etilenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA