Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(12): e3002419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048364

RESUMO

Circadian regulation of gene expression is prevalent and plays critical roles in cell differentiation. However, its roles in the reprogramming of differentiated cells remain largely unknown. Here, we found that one of the master circadian regulators PER1 promoted virus-mediated reprogramming of mouse embryonic fibroblasts (MEFs) to induced neurons (iNs) and induced pluripotent stem cells (iPSCs). Unexpectedly, PER1 achieved this by repressing inflammatory activation of contaminating macrophages in the MEF culture, rather than by directly modulating the reprogrammability of MEFs. More specifically, we found that transduced viruses activated inflammatory genes in macrophages, such as Tnf encoding TNFα, one of the central inflammatory regulators and an autocrine activator of macrophages. TNFα inhibited iN reprogramming, whereas a TNFα inhibitor promoted iN reprogramming, connecting the inflammatory responses to iN reprogramming. In addition, macrophages were induced to proliferate and mature by non-macrophage cells serving as feeders, which also supported up-regulation of TNFα in macrophages without virus transduction. Furthermore, the 2 inflammatory responses were repressed by the circadian regulator PER1 in macrophages, making reprogrammability dependent on time-of-day of virus transduction. Similar results were obtained with iPSC reprogramming, suggesting a wide occurrence of macrophage-mediated inhibition of cell reprogramming. This study uncovers mechanistic links between cell reprogramming, bystander inflammatory macrophages, and circadian rhythms, which are particularly relevant to in vivo reprogramming and organoid formation incorporating immune cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fator de Necrose Tumoral alfa , Animais , Camundongos , Diferenciação Celular , Reprogramação Celular , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Gastroenterology ; 161(2): 560-574.e11, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33895168

RESUMO

BACKGROUND & AIMS: Colorectal cancer is a major cause of cancer-related deaths worldwide. Immune checkpoint blockade therapies are effective in 30%-60% of the microsatellite instable-high subtype. Unfortunately, most patients with colorectal cancer (>85%) have microsatellite stable tumors that do not respond. In this study, we aimed to decipher the underlying tumor-intrinsic mechanisms critical for improving immunotherapy in colorectal cancer. METHODS: We used human and mouse tumor samples, cell lines, human colorectal cancer organoids, and various syngeneic orthotopic mouse models of late-stage colorectal cancer to define the effects of tumor cell-secreted extracellular vesicles (EVs) on antitumor immune response. RESULTS: Our analyses of human colorectal cancer immune profiles and tumor-immune cell interactions showed that tumor-secreted EVs containing microRNA miR-424 suppressed the CD28-CD80/86 costimulatory pathway in tumor-infiltrating T cells and dendritic cells, leading to immune checkpoint blockade resistance. Modified tumor-secreted EVs with miR-424 knocked down enhanced T-cell-mediated antitumor immune response in colorectal cancer tumor models and increased the immune checkpoint blockade response. Intravenous injections of modified tumor-secreted EVs induced tumor antigen-specific immune responses and boosted the immune checkpoint blockade efficacy in colorectal cancer models that mimic aggressively progressing, late-stage disease. CONCLUSIONS: Collectively, we show a critical role for tumor-secreted EVs in antitumor immune regulation and immunotherapy response, which could be developed as a novel treatment for immune checkpoint blockade-resistant colorectal cancer.


Assuntos
Neoplasias Colorretais/imunologia , Vesículas Extracelulares/imunologia , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Microambiente Tumoral , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Antígenos CD28/genética , Antígenos CD28/metabolismo , Células CACO-2 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Células HT29 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Células Jurkat , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Hipóxia Tumoral
3.
Proc Natl Acad Sci U S A ; 116(10): 4346-4351, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760602

RESUMO

Optimal cell-based therapies for the treatment of muscle degenerative disorders should not only regenerate fibers but provide a quiescent satellite cell pool ensuring long-term maintenance and regeneration. Conditional expression of Pax3/Pax7 in differentiating pluripotent stem cells (PSCs) allows the generation of myogenic progenitors endowed with enhanced regenerative capacity. To identify the molecular determinants underlying their regenerative potential, we performed transcriptome analyses of these cells along with primary myogenic cells from several developmental stages. Here we show that in vitro-generated PSC-derived myogenic progenitors possess a molecular signature similar to embryonic/fetal myoblasts. However, compared with fetal myoblasts, following transplantation they show superior myofiber engraftment and ability to seed the satellite cell niche, respond to multiple reinjuries, and contribute to long-term regeneration. Upon engraftment, the transcriptome of reisolated Pax3/Pax7-induced PSC-derived myogenic progenitors changes toward a postnatal molecular signature, particularly in genes involved in extracellular matrix remodeling. These findings demonstrate that Pax3/Pax7-induced myogenic progenitors remodel their molecular signature and functionally mature upon in vivo exposure to the adult muscle environment.


Assuntos
Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Perfilação da Expressão Gênica , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético , Mioblastos/metabolismo , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX7/genética , Transcriptoma
4.
BMC Cancer ; 21(1): 1209, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772393

RESUMO

BACKGROUND: To identify candidate key genes and pathways related to resting mast cells in meningioma and the underlying molecular mechanisms of meningioma. METHODS: Gene expression profiles of the used microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. GO and KEGG pathway enrichments of DEGs were analyzed using the ClusterProfiler package in R. The protein-protein interaction network (PPI), and TF-miRNA- mRNA co-expression networks were constructed. Further, the difference in immune infiltration was investigated using the CIBERSORT algorithm. RESULTS: A total of 1499 DEGs were identified between tumor and normal controls. The analysis of the immune cell infiltration landscape showed that the probability of distribution of memory B cells, regulatory T cells (Tregs), and resting mast cells in tumor samples were significantly higher than those in the controls. Moreover, through WGCNA analysis, the module related to resting mast cells contained 158 DEGs, and KEGG pathway analysis revealed that the DEGs were dominant in the TNF signaling pathway, cytokine-cytokine receptor interaction, and IL-17 signaling pathway. Survival analysis of hub genes related to resting mast cells showed that the risk model was constructed based on 9 key genes. The TF-miRNA- mRNA co-regulation network, including MYC-miR-145-5p, TNFAIP3-miR-29c-3p, and TNFAIP3-hsa-miR-335-3p, were obtained. Further, 36 nodes and 197 interactions in the PPI network were identified. CONCLUSION: The results of this study revealed candidate key genes, miRNAs, and pathways related to resting mast cells involved in meningioma development, providing potential therapeutic targets for meningioma treatment.


Assuntos
Perfilação da Expressão Gênica , Mastócitos/citologia , Neoplasias Meníngeas/genética , Meningioma/genética , Algoritmos , Bases de Dados Genéticas , Humanos , Imunidade Celular , Interleucina-17/metabolismo , Células B de Memória/citologia , Neoplasias Meníngeas/imunologia , Neoplasias Meníngeas/patologia , Meningioma/imunologia , Meningioma/patologia , MicroRNAs/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Linfócitos T Reguladores/citologia
5.
J Transl Med ; 18(1): 327, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867782

RESUMO

BACKGROUND: This study was intended to investigate the genomic landscape of the immune microenvironments of brain metastases in breast cancer. METHODS: Three gene expression profile datasets (GSE76714, GSE125989 and GSE43837) of breast cancer with brain metastases were downloaded from Gene Expression Omnibus (GEO) database. After differential expression analysis, the tumor immune microenvironment and immune cell infiltration were analyzed. Then immune-related genes were identified, followed by function analysis, transcription factor (TF)-miRNA-mRNA co-regulatory network analysis, and survival analysis of metastatic recurrence. RESULTS: The present results showed that the tumor immune microenvironment in brain metastases was immunosuppressed compared with primary caner. Compared with primary cancer samples, the infiltration ratio of plasma cells in brain metastases samples was significantly higher, while the infiltration ratio of macrophages M2 cells in brain metastases samples was significantly lower. Total 42 immune-related genes were identified, such as THY1 and NEU2. CD1B, THY1 and DOCK2 were found to be implicated in the metastatic recurrence of breast cancer. CONCLUSIONS: Targeting macrophages or plasma cells may be new strategies for immunotherapy of breast cancer with brain metastases. THY1 and NEU2 may be potential therapeutic targets for breast cancer with brain metastases, and THY1, CD1B and DOCK2 may serve as potential prognostic markers for improvement of brain metastases survival.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Neoplasias Encefálicas/genética , Mama , Neoplasias da Mama/genética , Genômica , Humanos , Microambiente Tumoral
6.
Cancer Cell Int ; 20: 419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874133

RESUMO

BACKGROUND AND AIMS: Glioblastoma (GBM) is a common and aggressive primary brain tumor, and the prognosis for GBM patients remains poor. This study aimed to identify the key genes associated with the development of GBM and provide new diagnostic and therapies for GBM. METHODS: Three microarray datasets (GSE111260, GSE103227, and GSE104267) were selected from Gene Expression Omnibus (GEO) database for integrated analysis. The differential expressed genes (DEGs) between GBM and normal tissues were identified. Then, prognosis-related DEGs were screened by survival analysis, followed by functional enrichment analysis. The protein-protein interaction (PPI) network was constructed to explore the hub genes associated with GBM. The mRNA and protein expression levels of hub genes were respectively validated in silico using The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) databases. Subsequently, the small molecule drugs of GBM were predicted by using Connectivity Map (CMAP) database. RESULTS: A total of 78 prognosis-related DEGs were identified, of which10 hub genes with higher degree were obtained by PPI analysis. The mRNA expression and protein expression levels of CETN2, MKI67, ARL13B, and SETDB1 were overexpressed in GBM tissues, while the expression levels of CALN1, ELAVL3, ADCY3, SYN2, SLC12A5, and SOD1 were down-regulated in GBM tissues. Additionally, these genes were significantly associated with the prognosis of GBM. We eventually predicted the 10 most vital small molecule drugs, which potentially imitate or reverse GBM carcinogenic status. Cycloserine and 11-deoxy-16,16-dimethylprostaglandin E2 might be considered as potential therapeutic drugs of GBM. CONCLUSIONS: Our study provided 10 key genes for diagnosis, prognosis, and therapy for GBM. These findings might contribute to a better comprehension of molecular mechanisms of GBM development, and provide new perspective for further GBM research. However, specific regulatory mechanism of these genes needed further elaboration.

7.
FASEB J ; 33(6): 6767-6777, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30807240

RESUMO

Fusion between cells of different organisms (i.e., xenogeneic hybrids) can occur, and for humans this may occur in the course of tissue transplantation, animal handling, and food production. Previous work shows that conferred advantages are rare in xenogeneic hybrids, whereas risks of cellular dysregulation are high. Here, we explore the transcriptome of individual xenogeneic hybrids of human mesenchymal stem cells and murine cardiomyocytes soon after fusion and ask whether the process is stochastic or involves conserved pathway activation. Toward this end, single-cell RNA sequencing was used to analyze the transcriptomes of hybrid cells with respect to the human and mouse genomes. Consistent with previous work, hybrids possessed a unique transcriptome distinct from either fusion partner but were dominated by the cardiomyocyte transcriptome. New in this work is the documentation that a few genes that were latent in both fusion partners were consistently expressed in hybrids. Specifically, human growth hormone 1, murine ribosomal protein S27, and murine ATP synthase H+ transporting, mitochondrial Fo complex subunit C2 were expressed in nearly all hybrids. The consistent activation of latent genes between hybrids suggests conserved signaling mechanisms that either cause or are the consequence of fusion of these 2 cell types and might serve as a target for limiting unwanted xenogeneic fusion in the future.-Yuan, C., Freeman, B. T., McArdle, T. J., Jung, J. P., Ogle, B. M. Conserved pathway activation following xenogeneic, heterotypic fusion.


Assuntos
Fusão Celular , Hormônio do Crescimento Humano/metabolismo , Células Híbridas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Transcriptoma , Animais , Células Cultivadas , Técnicas de Cocultura , Sequenciamento de Nucleotídeos em Larga Escala , Hormônio do Crescimento Humano/genética , Humanos , Células Híbridas/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Miócitos Cardíacos/citologia
8.
BMC Cancer ; 18(1): 1223, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522456

RESUMO

BACKGROUND: microRNAs (miRNAs) are crucially important in the development of cancer. Their dysregulation, commonly observed in various types of cancer, is largely cancer-dependent. Thus, to understand the tumor biology and to develop accurate and sensitive biomarkers, we need to understand pan-cancer miRNA expression. CONSTRUCTIONS: At the University of Minnesota, we developed the OncomiR Cancer Database (OMCD), hosted on a web server, which allows easy and systematic comparative genomic analyses of miRNA sequencing data derived from more than 9500 cancer patients tissue samples available in the Cancer Genome Atlas (TCGA). OMCD includes associated clinical information and is searchable by organ-specific terms common to the TCGA. CONCLUSIONS: Freely available to all users ( www.oncomir.umn.edu/omcd/ ), OMCD enables (1) simple visualization of TCGA miRNA sequencing data, (2) statistical analysis of differentially expressed miRNAs for each cancer type, and (3) exploration of miRNA clusters across cancer types. DATABASE URL: www.oncomir.umn.edu/omcd.


Assuntos
Bases de Dados Genéticas , Conjuntos de Dados como Assunto , MicroRNAs/genética , Neoplasias/genética , Bases de Dados Genéticas/estatística & dados numéricos , Conjuntos de Dados como Assunto/estatística & dados numéricos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias/epidemiologia , RNA Mensageiro/genética
9.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190186

RESUMO

Chronic inflammation of the colon (colitis) is a known risk factor for inflammatory-driven colorectal cancers (id-CRCs), and intestinal microbiota has been implicated in the etiology of id-CRCs. Manipulation of the microbiome is a clinically viable therapeutic approach to limiting id-CRCs. To understand the microbiome changes that occur over time in id-CRCs, we used a mouse model of id-CRCs with the treatment of azoxymethane (AOM) and dextran sodium sulfate (DSS) and measured the microbiome over time. We included cohorts where the microbiome was restored using cage bedding swapping and where the microbiome was depleted using antibiotics to compare to untreated animals. We identified consistent increases in Akkermansia in mice receiving horizontal microbiome transfer (HMT) via cage bedding swapping, while the control cohort had consistent longitudinal increases in Anaeroplasma and Alistipes. Additionally, fecal lipocalin-2 (Lcn-2), a marker of intestinal inflammation, was elevated in unrestored animals compared to restored and antibiotic-treated counterparts following HMT. These observations suggest a potential role for Akkermansia, Anaeroplasma, and Alistipes in regulating colonic inflammation in id-CRCs.

10.
Front Pharmacol ; 14: 1192225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554986

RESUMO

Physalis pubescens L. is an annual or perennial plant in the family Solanaceae It is used in traditional medicine for treating sore throats, coughs, urinary discomfort, and astringent pain, and externally for pemphigus and eczema in northern China. The proliferation inhibitory activity and mechanisms of the ethyl acetate extract (PHY-EA) from the leaves of Physalis pubescens were investigated. High performance liquid chromatography was used to identify the chemical composition of PHY-EA; sulforhodamine B was used to detect the proliferation inhibitory effect of PHY-EA on MCF-7, CA-46, Hela, HepG2, B16, and other tumor cells; flow cytometry was used to detect the effect of PHY-EA on the lymphoma cell cycle and apoptosis; Western blot was used to detect the expression of the cycle- and apoptosis-related proteins. The expression of Ki-67 and cleaved caspase 3 was detected by immunohistochemistry. The results showed that PHY-EA contained physalin B, physalin O, and physalin L. PHY-EA blocked the cell cycle of G2/M→G0/G1 in lymphoma cells and induced apoptosis in tumor cells. Mouse transplantation tumor experiments showed that PHY-EA had a significant inhibitory effect on mouse transplantation tumors, and the tumor volume and weight were significantly reduced. In conclusion, PHY-EA has a good antiproliferative effect on Burkkit lymphoma, indicating its potential medicinal value.

11.
Front Pharmacol ; 14: 1218467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719860

RESUMO

Introduction: Artesunate, a derivative of artemisinin, has anti-malarial effects, and in recent years has also been reported to have anti-tumor activity. However, its anti-tumor mechanisms are not well understood. Methods: In this study, we focused on the targeting of Hsp90 by artesunate to inhibit tumor cell proliferation, which we examined using immunoprecipitation, a proliferation assay, flow cytometry, western blotting, a tumor xenograft animal model, and immunohistochemistry. Furthermore, to examine the tumor-suppressive effects of artesunatein nude mice, we used artesunate-loaded PLGA-PEG nanoparticles. Results: The binding of artesunate to Hsp90 was found to reduce the expression of its client proteins AKT, ERK, p-AKT, p-ERK, and EGFR, thereby blocking the cell cycle at the G0/G1 → S stage in lymphoma cells and inducing apoptosis. In addition, the results of tumor xenograft experiments revealed that artesunate reduced the expression of AKT and ERK proteins in tumor tissues, inhibited tumor proliferation, and reduced tumor size and weight. Furthermore, nanoparticle encapsulation was demonstrated to enhance the anti-cancer activity of artesunate. Discussion: We thus established that artesunate inhibits the proliferation of lymphoma cells by targeting the Hsp90 protein, and we accordingly believe that this compound has potential for development as a novelanti-tumor drug.

12.
Pharmacol Ther ; 231: 107981, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480964

RESUMO

Despite significant advances over the past 2 decades in preventive screening and therapy aimed at improving patient survival, colorectal cancer (CRC) remains the second most common cause of cancer death in the United States. The average 5-year survival rate of CRC patients with positive regional lymph nodes is only 40%, while less than 5% of patients with distant metastases survive beyond 5 years. There is a critical need to develop novel therapies that can improve overall survival in patients with poor prognoses, particularly since 60% of them are diagnosed at an advanced stage. Pertinently, immune checkpoint blockade therapy has dramatically changed how we treat CRC patients with microsatellite-instable high tumors. Furthermore, accumulating evidence shows that changes in gut microbiota are associated with the regulation of host antitumor immune response and cancer progression. Appropriate animal models are essential to deciphering the complex mechanisms of host antitumor immune response and tumor-gut microbiome metabolic interactions. Here, we discuss various mouse models of colorectal cancer that are developed to address key questions on tumor immune response and tumor-microbiota interactions. These CRC models will also serve as resourceful tools for effective preclinical studies.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Animais , Neoplasias Colorretais/tratamento farmacológico , Humanos , Imunidade , Camundongos
13.
Heliyon ; 8(10): e11013, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36276736

RESUMO

To study the antitumor activity of compound 3-desoxysulforaphane (3-DSC) isolated from Caesalpinia sinensis, SRB assay, clone formation assay, flow cytometric cell cycle assay, scratch assay, transwell assay, and molecular docking were used to investigate the inhibitory effect of 3-DSC on HeLa and PC3 cells. The results showed that 3-DSC inhibited the cell migration and invasion by down-regulating expression of N-cadherin, Vimentin, MMP-2, and MMP-9 in HeLa and PC3 cells; It also inhibits cell proliferation by promoting the expression of CDK1 (cyclin-dependent kinases 1) and CDK2 (cyclin-dependent kinases 2), which arrests the tumor cell cycle at G2 phase. 3-DSC inhibits phosphorylation of AKT and ERK and upregulates the expression of the tumor suppressor gene p53. Molecular docking results confirmed that 3-DSC could bind firmly to AKT. In conclusion, 3-DSC inhibited the proliferation, migration and invasion of HeLa and PC3 cells.

14.
Cancers (Basel) ; 13(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34638505

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies in both morbidity and mortality. Immune checkpoint blockade (ICB) treatments have been successful in a portion of mismatch repair-deficient (dMMR) CRC patients but have failed in mismatch repair-proficient (pMMR) CRC patients. Atypical Chemokine Receptor 4 (ACKR4) is implicated in regulating dendritic cell (DC) migration. However, the roles of ACKR4 in CRC development and anti-tumor immunoregulation are not known. By analyzing human CRC tissues, transgenic animals, and genetically modified CRC cells lines, our study revealed an important function of ACKR4 in maintaining CRC immune response. Loss of ACKR4 in CRC is associated with poor immune infiltration in the tumor microenvironment. More importantly, loss of ACKR4 in CRC tumor cells, rather than stromal cells, restrains the DC migration and antigen presentation to the tumor-draining lymph nodes (TdLNs). Moreover, tumors with ACKR4 knockdown become less sensitive to immune checkpoint blockade. Finally, we identified that microRNA miR-552 negatively regulates ACKR4 expression in human CRC. Taken together, our studies identified a novel and crucial mechanism for the maintenance of the DC-mediated T-cell priming in the TdLNs. These new findings demonstrate a novel mechanism leading to immunosuppression and ICB treatment resistance in CRC.

15.
Front Neurol ; 12: 576382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643183

RESUMO

Objective: This study aimed to investigate the molecular mechanism of tumor necrosis factor (TNF) superfamily-related genes and potential therapeutic drugs for glioblastoma multiforme (GBM) patients based on transcriptome and epigenome. Methods: Gene expression data, corresponding clinical data, and methylation data of GBM samples and normal samples in the TCGA-GBM and GTEx datasets were downloaded. The TNF-related genes were obtained, respectively, from two groups in the TCGA dataset. Then, the TNF-related differentially expressed genes (DEGs) were investigated between two groups, followed by enrichment analysis. Moreover, TNF superfamily-related gene expression and upstream methylation regulation were investigated to explore candidate genes and the prognostic model. Finally, the protein expression level of candidate genes was performed, followed by drug prediction analysis. Results: A total of 41 DEGs including 4 ligands, 18 receptors, and 19 downstream signaling molecules were revealed between two groups. These DEGs were mainly enriched in pathways like TNF signaling and functions like response to TNF. A total of 5 methylation site-regulated prognosis-related genes including TNF Receptor Superfamily Member (TNFRSF) 12A, TNFRSF11B, and CD40 were explored. The prognosis model constructed by 5 genes showed a well-prediction effect on the current dataset and verification dataset. Finally, drug prediction analysis showed that zoledronic acid (ZA)-TNFRSF11B was the unique drug-gene relation in both two databases. Conclusion: Methylation-driven gene TNFRSF12A might participate in the development of GBM via response to the TNF biological process and TNF signaling pathway and significantly associated with prognosis. ZA that targets TNFRSF11B expression might be a potential effective drug for clinical treatment of GBM.

16.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34009269

RESUMO

Circadian rhythms regulate cell proliferation and differentiation, but circadian control of tissue regeneration remains elusive at the molecular level. Here, we show that proper myoblast differentiation and muscle regeneration are regulated by the circadian master regulators Per1 and Per2. Depletion of Per1 or Per2 suppressed myoblast differentiation in vitro and muscle regeneration in vivo, demonstrating their nonredundant functions. Both Per1 and Per2 were required for the activation of Igf2, an autocrine promoter of myoblast differentiation, accompanied by Per-dependent recruitment of RNA polymerase II, dynamic histone modifications at the Igf2 promoter and enhancer, and the promoter-enhancer interaction. This circadian epigenetic priming created a preferred time window for initiating myoblast differentiation. Consistently, muscle regeneration was faster if initiated at night, when Per1, Per2, and Igf2 were highly expressed compared with morning. This study reveals the circadian timing as a significant factor for effective muscle cell differentiation and regeneration.


Assuntos
Ritmo Circadiano/genética , Fator de Crescimento Insulin-Like II/genética , Proteínas Circadianas Period/genética , Regeneração/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética
17.
mSystems ; 5(3)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457236

RESUMO

The intestinal microbiota is highly metabolically active and plays an important role in many metabolic processes absent from the human host. Altered microbiota metabolism has been linked to diseases such as obesity, cardiovascular disease, and colorectal cancer. However, there is a gap in the current knowledge on how the microbiota interact with its host in terms of metabolic interactions. Here, we performed an integrated analysis between the mucosa-associated microbiota and the mucosa metabolome in healthy, nonhuman primates to investigate these relationships. The microbiota composition was distinct at each tissue location, with variation by host individual also observed. Microbiota-metabolome dynamics were primarily driven by interactions in the distal colon. These interactions were strongly correlated with dietary component, indicating a possibility to modulate microbiota-metabolomic interactions using prebiotic strategies.IMPORTANCE In a healthy colon, the microbiota produces a vast amount of metabolites that are essential to maintaining homeostasis in the colon microenvironment. In fact, these metabolites produced by the microbiota have been linked to diseases such as obesity, cardiovascular disease, and colorectal cancer. In this study, we used healthy nonhuman primate models to investigate the relationship between microbiota and tissue metabolites. We found that both microbiota and metabolites have location-specific signatures along the intestine. Most importantly, we found that metabolites from food sources correlate with multiple bacteria in different intestinal locations. Overall, this work presents a systems-level map of the association between the microbiota and the metabolites in healthy nonhuman primates, provides candidates for experimental validation, and suggests a possibility to regulate the gut microbiota through specific prebiotic combinations.

18.
J Clin Invest ; 130(5): 2465-2477, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32250341

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by loss of repression of the DUX4 gene; however, the DUX4 protein is rare and difficult to detect in human muscle biopsies, and pathological mechanisms are obscure. FSHD is also a chronic disease that progresses slowly over decades. We used the sporadic, low-level, muscle-specific expression of DUX4 enabled by the iDUX4pA-HSA mouse to develop a chronic long-term muscle disease model. After 6 months of extremely low sporadic DUX4 expression, dystrophic muscle presented hallmarks of FSHD histopathology, including muscle degeneration, capillary loss, fibrosis, and atrophy. We investigated the transcriptional profile of whole muscle as well as endothelial cells and fibroadiopogenic progenitors (FAPs). Strikingly, differential gene expression profiles of both whole muscle and, to a lesser extent, FAPs, showed significant overlap with transcriptional profiles of MRI-guided human FSHD muscle biopsies. These results demonstrate a pathophysiological similarity between disease in muscles of iDUX4pA-HSA mice and humans with FSHD, solidifying the value of chronic rare DUX4 expression in mice for modeling pathological mechanisms in FSHD and highlighting the importance FAPs in this disease.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Transcrição Gênica , Animais , Modelos Animais de Doenças , Células Progenitoras Endoteliais/patologia , Feminino , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia
19.
DNA Cell Biol ; 38(4): 281-285, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30668143

RESUMO

Worldwide, colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Recent advances in high-throughput technologies have shown that the gut microbiota may have a major influence on human health, including CRC. Nonetheless, how the gut microbiota interacts with tumor cells in CRC patients is largely unknown. Studies have shown that the microbiota fills in a variety of niche metabolic pathways that the host does not possess. For example, the microbiota produces butyrate, which provides the colon's epithelial cells with about 70% of their energy needs. The typically fast proliferation of tumor cells in CRC patients drastically alters the tumor's nutrient microenvironment. Those alterations correspond to the microbiota composition and functional changes. In tumor cells, a central mediator of metabolic changes is the aberrant expression of microRNAs (miRNAs). In this study, we explored recent insights into metabolic interactions between the microbiota and tumor cells in CRC pathobiology, focusing on the role of miRNAs. These observations support our view that miRNAs may also serve as mediators of the metabolites' effects.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , MicroRNAs/genética , Microbiota , Animais , Neoplasias Colorretais/patologia , Humanos , Microambiente Tumoral
20.
Genes (Basel) ; 10(4)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987065

RESUMO

Changes in gut microbiota composition have consistently been observed in patients with colorectal cancer (CRC). Yet, it is not entirely clear how the gut microbiota interacts with tumor cells. We know that tumor cells undergo a drastic change in energy metabolism, mediated by microRNAs (miRNAs), and that tumor-derived miRNAs affect the stromal and immune cell fractions of the tumor microenvironment. Recent studies suggest that host intestinal miRNAs can also affect the growth and composition of the gut microbiota. Our previous CRC studies showed a high-level of interconnectedness between host miRNAs and their microbiota. Considering all the evidence to date, we postulate that the altered nutrient composition and miRNA expression in the CRC microenvironment selectively exerts pressure on the surrounding microbiota, leading to alterations in its composition. In this review article, we present our current understanding of the role of miRNAs in mediating host-microbiota interactions in CRC.


Assuntos
Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/genética , Interações entre Hospedeiro e Microrganismos/genética , MicroRNAs/genética , Neoplasias Colorretais/genética , Humanos , Intestinos/microbiologia , Intestinos/patologia , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA