Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(31): 14623-14629, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39038226

RESUMO

Chalcopyrite copper-indium-gallium diselenides (CIGS) have emerged as promising materials with remarkable electronic properties and potential applicability to high-efficiency solar cells. The crystal and electronic structures of CIGS can be continuously tuned from their initial states under pressure. Although pressure-induced band gap closure in CIGS has been predicted in extensive theoretical studies, it has not been supported by experimental evidence. Here, we comprehensively investigate the pressure-dependent optical, electronic, and structural properties of Cu(In0.7Ga0.3)Se2 up to 42.6 GPa. Our experimental results reveal an irreversible electronic transition from the semiconducting to the metallic state at 14.3 GPa. Under compression, the Cu(In0.7Ga0.3)Se2 structure evolves from a tetragonal I4̅2d phase to an orthorhombic Pna21 phase, which has not been previously reported in chalcopyrite. More intriguingly, the Pna21 phase is irreversible and possesses smaller Cu-Se and In/Ga-Se bond lengths and a smaller Cu-Se-Cu bond angle than the I4̅2d phase. Density functional theory calculations indicate a lower enthalpy of the Pna21 phase than that of the I4̅2d phase at pressures above 10.6 GPa. Meanwhile, density of states calculations illustrate that metallization arises from the overlap of the Se p and Cu d orbitals as the bond length reduces. This pressure-induced behavior could facilitate the development of novel devices with various phenomena involving strong coupling of the mechanical, electrical, and optical properties of chalcopyrite.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(2): 408-12, 2016 Feb.
Artigo em Zh | MEDLINE | ID: mdl-27209740

RESUMO

Cyclobutanol (C4H8O) is one of the four-membered ring type molecules, which usually adopts a non-planar equilibrium conformation, and the substituent group OH can adopt two positions relative to the puckered ring, the axial or the equatorial, giving rise to an additional degree of freedom and various molecular conformations. Additionally, temperature is one important thermodynamic parameter that greatly influents the structure and induces the possibility of conformational change or crystal change. As a consequence, there may be a number of phase transitions and molecular conformations for cyclobutanol under different temperature. In this paper, Raman and infrared spectroscopic technique were applied to investigate the vibration modes of cyclobutanol. The results indicate that the main component of the liquid cyclobutanol is equatorial-trans (Eq-t) conformer with a few Eq-g conformers at ambient condition. Then differential scanning calorimetry (DSC) and low temperature Raman spectroscopic were applied to study the phase transition of cyclobutanol during the cooling and heating process. It is observed that the Raman spectra and the intensities of these bands are not significantly changed during the cooling process. The results indicate that there is sill no presence of solidification especially cooling to 140K, which indicates that the cyclobutanol still remains the liquid state and supercooled state is observed during the cooling process. And this supercooled liquid is one metastable state, not in thermodynamic equilibrium. Further cooling to 138 K, the super-cooling liquid cyclobutanol will transform into the glassy state, accompanied with a small change of entropy. During the heating process, as the temperature is raised to 180 K, the Raman peaks became sharper and some new characteristic peaks appeared abruptly and a discontinuous change was observed in bandwidths versus temperature. And these new signatures can be maintained upon to 220 K, and then will disappear as the temperature increasing continuously. This result indicates the one crystal phase transition and a melting transition present at around 180 and 220 K. In addition, it can be observed that the component of Eq-g conformer increases, accompanied with the crystallization during heating at around 180 K. These results were helpful to understand the kinetics of the crystallization process of other small organic molecules.

3.
J Chem Phys ; 130(18): 184503, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19449932

RESUMO

Behavior of the phase transition of an ionic liquid, [Cn-mim][PF(6)], has been investigated under pressures up to 1.0 GPa by using a high-pressure differential thermal analysis (DTA) apparatus. The T versus P phase diagrams of [BMIM][PF(6)] and [EMIM][PF(6)] are constructed. The DTA curve of [BMIM][PF(6)] shows one endothermal valley in heating course at each given pressure, which indicates that a simple phase transition from solid to liquid has taken place under high pressure and that the melting point is an increase function of pressure. However, the DTA curve of [EMIM] x [PF(6)] shows two endothermal valleys in the heating course within the tested pressure range, implying that there may exist another phase. After treatment of [EMIM][PF(6)] at different temperatures under high pressure, the structures of the recovered samples are also investigated by wide-angle x-ray scattering. By considering the results above, it indicates that another crystalline phase exists between the solid and liquid of [EMIM][PF(6)].

4.
J Phys Condens Matter ; 30(15): 154001, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29504945

RESUMO

By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in rapid compression process for several kinds of materials, such as elementary sulfur, polymer polyether-ether-ketone (PEEK) and poly-ethylene-terephthalate, alloy La68Al10Cu20Co2 and Nd60Cu20Ni10Al10. Experimental results clearly show that their melts could be solidified to be amorphous states through the rapid compression process. Bulk amorphous PEEK with 24 mm in diameter and 12 mm in height was prepared, which exceeds the size obtained by melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K for the first time. Furthermore, it is suggested that the glass transition pressure and critical compression rate exist to form the amorphous phase. This approach of rapid compression is very attractive not only because it is a new technique of make bulk amorphous materials, but also because novel properties are expected in the amorphous materials solidified by the pressure-jump within milliseconds or microseconds.

5.
Int J Biol Macromol ; 112: 803-808, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29425863

RESUMO

Sol-gel transition behavior of agarose aqueous solution was investigated by using rheology and fluorescence measurement. On heating, the storage modulus G' decreased gradually, then deviated abruptly at the temperature of about 65°C, and finally decreased slowly again. For fluorescence measurement, the phase transition point kept almost at the temperature of 65°C, which was consistent with that in rheology measurement. Upon compression, it was indicated that the fluorescence lifetime for the probe in the agarose aqueous solution showed a dramatic change in the vicinity of the phase transition point. T vs. P phase diagram of agarose aqueous solution was constructed, which showed that the melting point was an increasing function of pressure. Based on the phase diagram, the agarose gels were prepared by cooling under atmospheric pressure and the pressure of 300MPa, respectively. From the result of the recovered samples studied by optical rheometry, it was found that agarose gel prepared under high pressure had a higher elasticity and lower viscosity index, compared with that under atmospheric pressure. It could be speculated that such kinds of properties might be attributed to the smaller pore size during gelation under high pressure.


Assuntos
Transição de Fase , Sefarose/química , Água/química , Módulo de Elasticidade , Fluorescência , Pressão , Soluções , Temperatura , Viscosidade
6.
Polymers (Basel) ; 10(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30960771

RESUMO

By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in the rapid compression process for poly-ethylene-terephthalate (PET), polyether-ether-ketone (PEEK), isotactic polypropylene (iPP), high-density polyethylene (HDPE), and the living polymer sulfur. The experimental results clearly show that crystallization could be inhibited, and some melts were solidified to the full amorphous state for PET, PEEK, and sulfur. Full amorphous PEEK that was 24 mm in diameter and 12 mm in height was prepared, which exceeded the size obtained by the melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K. Since the solidification of melt is realized by changing pressure instead of temperature and is not essentially limited by thermal conductivity, it is a promising way to prepare fully amorphous polymers. In addition, novel properties are also expected in these polymers solidified by the pressure-jump within milliseconds.

7.
Carbohydr Polym ; 190: 190-195, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29628237

RESUMO

Gelation of methylcellulose aqueous solution was investigated by a high-pressure viscosity measurement device which consisted of diamond anvil cell, microscope and CCD. And the temperature and pressure dependence of the viscosity of methylcellulose aqueous solution was measured utilizing a rolling-ball technique. The results showed that sol-gel thermal transition of methylcellulose solution occurred at the temperature of 53 °C under atmospheric pressure. Upon compression, it was indicated that the viscosity showed a dramatic change in the vicinity of the pressure of 500 MPa. Parabolic phase diagram of methylcellulose aqueous solution was constructed, and it showed that the melting point was an increasing function of pressure at the first stage and an decreasing function of pressure at the final stage. The mechanism of sol-gel transformation of methylcellulose aqueous solutions was also discussed, it might be assumed that both hydrogen and hydrophobic bonds were involved with the gel formation in the case of methylcellulose aqueous solution.

8.
J Phys Chem B ; 116(7): 2216-22, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22239600

RESUMO

In situ characterization of phase transitions and direct microscopic observations of a low-melting ionic liquid, 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM][BF(4)]), has been performed in detail by Raman spectroscopy. Compression of [BMIM][BF(4)] was measured under hydrostatic pressure up to ~30.0 GPa at room temperature by using a high-pressure diamond anvil cell. With pressure increasing, the characteristic bands of [BMIM][BF(4)] displayed nonmonotonic pressure-induced frequency shifts, and it is found to undergo four successive phase transitions at around 2.25, 6.10, 14.00, and 21.26 GPa. Especially, above a pressure of 21.26 GPa, luminescence of the sample occurs, which is connected with the most significant phase transition at around this pressure. It was indicated that the structure change under high pressure might be associated with a conformational change in the butyl chain. Upon releasing pressure, the spectrum was not recovered under a pressure up to 1.16 GPa, thereby indicating that this high-pressure phase remains stable over a large pressure range between 30 and 1.16 GPa in low-melting ionic liquid [BMIM][BF(4)]. Although the sample was kept under the normal pressure for 24 h, the spectrum was recovered, and it showed that the phase transition of [BMIM][BF(4)] was reversible. In other words, such a low-melting ionic liquid [BMIM][BF(4)] remains stable even after being treated under so a high pressure of up to 30 GPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA