Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108245

RESUMO

Branching is an important agronomic and economic trait in cut chrysanthemums. The axillary meristem (AM) formation of the axillary buds of cut chrysanthemums has a decisive role in its branching characteristics. However, little is known about the regulation mechanism of axillary meristem formation in chrysanthemums at the molecular level. Members of the Homeobox gene family especially genes belonging to the class I KNOX branch play a key role in regulating the axillary bud growth and development processes of plants. In this study, three genes belonging to the class I KNOX branch, CmKNAT1, CmKNAT6, and CmSTM were cloned from chrysanthemums, and their functions in regulating axillary bud formation were examined. The subcellular localization test showed that these three KNOX genes were expressed in the nucleus, so all of them might function as transcription factors. The results of the expression profile analysis showed that these three KNOX genes were highly expressed in the AM formation stage of axillary buds. Overexpression of KNOX genes result in a wrinkled leaf phenotype in tobacco and Arabidopsis, which may be related to the excessive division of leaf cells, resulting in the proliferation of leaf tissue. Furthermore, overexpression of these three KNOX genes enhances the regeneration ability of tobacco leaves, indicating that these three KNOX genes may participate in the regulation of cell meristematic ability, thus promoting the formation of buds. In addition, the results of fluorescence quantitative testing showed that these three KNOX genes may promote the formation of chrysanthemum axillary buds by promoting the cytokinin pathway while inhibiting the auxin and gibberellin pathways. In conclusion, this study demonstrated that CmKNAT1, CmKNAT6, and CmSTM genes were involved in regulating axillary bud formation of Chrysanthemum × morifolium and preliminarily revealed the molecular mechanism of their regulation of AM formation. These findings may provide a theoretical basis and candidate gene resources for genetic engineering breeding of new varieties of cut chrysanthemums without lateral branches.


Assuntos
Arabidopsis , Chrysanthemum , Chrysanthemum/metabolismo , Melhoramento Vegetal , Meristema/genética , Meristema/metabolismo , Citocininas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
New Phytol ; 235(1): 141-156, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34861048

RESUMO

Plant with naturally twisted branches is referred to as a tortuous-branch plant, which have extremely high ornamental value due to their zigzag shape and the natural twisting of their branches. Prunus mume is an important woody ornamental plant. However, the molecular mechanism underlying this unique trait in Prunus genus is unknown. Here, we present a chromosome-level genome assembly of the cultivated P. mume var. tortuosa created using Oxford Nanopore combined with Hi-C scaffolding, which resulted in a 237.8 Mb genome assembly being anchored onto eight pseudochromosomes. Molecular dating indicated that P. mume is the most recently differentiated species in Prunus. Genes associated with cell division, development and plant hormones play essential roles in the formation of tortuous branch trait. A putative regulatory pathway for the tortuous branch trait was constructed based on gene expression levels. Furthermore, after transferring candidate PmCYCD genes into Arabidopsis thaliana, we found that seedlings overexpressing these genes exhibited curled rosette leaves. Our results provide insights into the evolutionary history of recently differentiated species in Prunus genus, the molecular basis of stem morphology, and the molecular mechanism underlying the tortuous branch trait and highlight the utility of multi-omics in deciphering the properties of P. mume plant architecture.


Assuntos
Prunus , Cromossomos , Genoma de Planta , Fenótipo , Prunus/genética
3.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575868

RESUMO

Temperature is an important factor that largely affects the patterns of shoot branching in plants. However, the effect and mechanism of temperature on axillary bud development in chrysanthemum remains poorly defined. The purpose of the present study is to investigate the effect of high temperature on the axillary bud growth and the mechanism of axillary bud formation in chrysanthemum. Decapitation experiments combined with the transcriptome analysis were designed. Results showed that the axillary bud length was significantly inhibited by high temperature. Decapitation of primary shoot (primary decapitation) resulted in slower growth of axillary buds (secondary buds) under 35 °C. However, secondary decapitation resulted in complete arrest of tertiary buds at high temperature. These results demonstrated that high temperature not only inhibited axillary bud formation but also retarded bud outgrowth in chrysanthemum. Comparative transcriptome suggested differentially expressed gene sets and identified important modules associated with bud formation. This research helped to elucidate the regulatory mechanism of high temperature on axillary bud growth, especially bud formation in chrysanthemum. Meanwhile, in-depth studies of this imperative temperature signaling can offer the likelihood of vital future applications in chrysanthemum breeding and branching control.


Assuntos
Chrysanthemum/embriologia , Chrysanthemum/genética , Chrysanthemum/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/genética , Citocininas/genética , Perfilação da Expressão Gênica , Genes de Plantas , Homeostase , Temperatura Alta , Ácidos Indolacéticos , Proteínas de Plantas/genética , Brotos de Planta/genética , RNA-Seq , Sacarose/química , Transcriptoma
4.
Plant Mol Biol ; 103(1-2): 159-171, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32088830

RESUMO

The complex capitulum of Chrysanthemum morifolium is often comprised of bilaterally symmetrical ray florets and radially symmetrical disc florets. The TCP transcription factor clade CYCLOIDEA2 (CYC2) appears to play a vital role in determining floral symmetry and in regulating floral organ development in Asteraceae. Our previous study identified six CmCYC2 genes from chrysanthemum and showed that CmCYC2c participated in the regulation of ray floret identity. However, the functions of other CmCYC2 genes and the underlying molecular mechanism of CmCYC2-mediated floral development regulation in chrysanthemums have not been elucidated. In this study, we analysed the function of CmCYC2 genes by ectopic expression of CmCYC2 in Arabidopsis. Then, we examined the protein-protein interaction using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Finally, we analysed the protein-DNA interaction using yeast one-hybrid (Y1H) and dual-luciferase reporter assays. We found that ectopic expression of CmCYC2 genes in the Arabidopsis tcp1 mutant changed its floral symmetry and flowering time. Y2H and BiFC assays confirmed three pairs of interactions between CmCYC2 proteins, that is, CmCYC2b-CmCYC2d, CmCYC2b-CmCYC2e and CmCYC2c-CmCYC2d, suggesting that heterodimeric complexes may form between CmCYC2 proteins to increase their functional specificity. The results of Y1H and dual-luciferase reporter assays indicate that CmCYC2c can bind to the promoter of ClCYC2f. Our findings provided clues that CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in C. morifolium. KEY MESSAGE: CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate floral symmetry development in Chrysanthemum morifolium.


Assuntos
Chrysanthemum/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Chrysanthemum/anatomia & histologia , Chrysanthemum/crescimento & desenvolvimento , Dimerização , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Genes de Plantas , Ligação Proteica
5.
BMC Plant Biol ; 20(1): 145, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264822

RESUMO

BACKGROUND: Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS: Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS: RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.


Assuntos
Chrysanthemum/metabolismo , Meristema/fisiologia , Transcriptoma , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/ultraestrutura , Redes Reguladoras de Genes , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Temperatura
6.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875718

RESUMO

Chrysanthemum morifolium is a gynomonoecious plant that bears both female zygomorphic ray florets and bisexual actinomorphic disc florets in the inflorescence. This sexual system is quite prevalent in Asteraceae, but poorly understood. CYCLOIDEA (CYC) 2 subclade transcription factors, key regulators of flower symmetry and floret identity in Asteraceae, have also been speculated to function in reproductive organs and could be an entry point for studying gynomonoecy. However, the molecular mechanism is still unclear. On the other hand, the Arabidopsis WUSCHEL (WUS) transcription factor has been proven to play a vital role in the development of reproductive organs. Here, a WUS homologue (CmWUS) in C. morifolium was isolated and characterized. Overexpression of CmWUS in A. thaliana led to shorter siliques and fewer stamens, which was similar to CYC2-like genes reported before. In addition, both CmWUS and CmCYC2 were highly expressed in flower buds during floral organ differentiation and in the reproductive organs at later development stages, indicating their involvement in the development of reproductive organs. Moreover, CmWUS could directly interact with CmCYC2d. Thus, our data suggest a collaboration between CmWUS and CmCYC2 in the regulation of reproductive organ development in chrysanthemum and will contribute to a further understanding of the gynomonoecious sexual system in Asteraceae.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Chrysanthemum/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 19(6)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29843424

RESUMO

Single-flower cut Chrysanthemum (Dendranthema grandiflorum 'Jinba') holds a unique status in global floriculture industry. However, the extensive axillary bud outgrowth presents a major drawback. Shade is an environment cue that inhibits shoot branching. Present study was aimed at investigating the effect of ratio of red to far-red light (R:FR) in regulating the lateral bud outgrowth of Chrysanthemum and the detailed mechanism. Results showed that the fate of axillary buds at specific positions in stem exhibited difference in response to R:FR. Decreasing R:FR resulted in elevation of abscisic acid (ABA) accumulation in axillary buds. Expression of ABA, indole-3-acetic acid (IAA) and strigolactones (SL) -related metabolism and signal transduction genes was significantly changed in response to low R:FR. In addition, low R:FR caused the re-distribution of sucrose across the whole plant, driving more sucrose towards bottom buds. Our results indicate that low R:FR not always inhibits bud outgrowth, rather its influence depends on the bud position in the stem. ABA, SL and auxin pathways were involved in the process. Interestingly, sucrose also appears to be involved in the process which is necessary to pay attention in the further studies. The present study also lays the foundation for developing methods to regulate axillary bud outgrowth in Chrysanthemum.


Assuntos
Chrysanthemum/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/efeitos da radiação , Ácido Abscísico/metabolismo , Chrysanthemum/genética , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/metabolismo , Jardinagem/métodos , Perfilação da Expressão Gênica , Humanos , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Luz , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais , Sacarose/metabolismo
8.
BMC Evol Biol ; 14(1): 53, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24655746

RESUMO

BACKGROUND: Pollen donor compositions differ during the early stages of reproduction due to various selection mechanisms. In addition, ovules linearly ordered within a fruit have different probabilities of reaching maturity. Few attempts, however, have been made to directly examine the magnitude and timing of selection, as well as the mechanisms during early life stages and within fruit. Robinia pseudoacacia, which contains linear fruit and non-random ovule maturation and abortion patterns, has been used to study the viability of selection within fruit and during the early stages of reproduction. To examine changes in the pollen donor composition during the early stages of reproduction and of progeny originating from different positions within fruit, paternity analyses were performed for three early life stages (aborted seeds, mature seeds and seedlings) in the insect-pollinated tree R. pseudoacacia. RESULTS: Selection resulted in an overall decrease in the level of surviving selfed progeny at each life stage. The greatest change was observed between the aborted seed stage and mature seed stage, indicative of inbreeding depression (the reduced fitness of a given population that occurs when related individual breeding was responsible for early selection). A selective advantage was detected among paternal trees. Within fruits, the distal ends showed higher outcrossing rates than the basal ends, indicative of selection based on the order of seeds within the fruit. CONCLUSIONS: Our results suggest that selection exists both within linear fruit and during the early stages of reproduction, and that this selection can affect male reproductive success during the early life stages. This indicates that tree species with mixed-mating systems may have evolved pollen selection mechanisms to increase the fitness of progeny and adjust the population genetic composition. The early selection that we detected suggests that inbreeding depression caused the high abortion rate and low seed set in R. pseudoacacia.


Assuntos
Robinia/crescimento & desenvolvimento , Robinia/genética , Cruzamento , Frutas/genética , Fluxo Gênico , Variação Genética , Pólen/genética , Polinização , Reprodução , Robinia/fisiologia , Sementes/genética , Árvores/genética
9.
Acta Biol Hung ; 64(3): 364-76, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24013897

RESUMO

Emasculation and bagging of flowers, which are widely used in the controlled pollination of monoclinous plants, may induce premature senescence, flower abscission and low fruit set. To determine the mechanism responsible for these phenomena, levels of abscisic acid (ABA), jasmonic acid (JA), indole-3-acetic acid (IAA), ethylene, soluble sugars, reducing sugars and free amino acids in black locust (Robinia pseudoacacia) flowers subjected to different treatments were quantified at different developmental stages. The phytohormones and assimilates were also quantified in untreated flowers to investigate the presence of discernible patterns. The levels of ethylene and ABA in emasculated and bagged (EB) flowers increased prematurely compared with those of untreated flowers, whereas the content of reducing sugars in EB flowers decreased compared with that of untreated flowers. These results indicated that the premature increase in ethylene and ABA synthesis, and the decrease in reducing sugars content, in EB flowers may cause flower abscission and result in low fruit set, which may be relevant for assimilate applications and future research on the regulation of controlled pollinations with exogenous phytohormones.


Assuntos
Flores/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Robinia/metabolismo , Ácido Abscísico/metabolismo , Botânica/métodos , Ciclopentanos/metabolismo , Etilenos/metabolismo , Flores/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Robinia/crescimento & desenvolvimento
10.
Plants (Basel) ; 12(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37176937

RESUMO

The branching phenotype is an extremely important agronomic trait of plants, especially for horticultural crops. It is not only an important yield character of fruit trees, but also an exquisite ornamental trait of landscape trees and flowers. The branching characteristics of plants are determined by the periodic initiation and later development of meristems, especially the axillary meristem (AM) in the vegetative stage and the floral meristem (FM) in the reproductive stage, which jointly determine the above-ground plant architecture. The regulation of meristem initiation has made great progress in model plants in recent years. Meristem initiation is comprehensively regulated by a complex regulatory network composed of plant hormones and transcription factors. However, as it is an important trait, studies on meristem initiation in horticultural plants are very limited, and the mechanism of meristem initiation regulation in horticultural plants is largely unknown. This review summarizes recent research advances in axillary meristem regulation and mainly reviews the regulatory networks and mechanisms of AM and FM initiation regulated by transcription factors and hormones. Finally, considering the existing problems in meristem initiation studies and the need for branching trait improvement in horticulture plants, we prospect future studies to accelerate the genetic improvement of the branching trait in horticulture plants.

11.
Hortic Res ; 10(9): uhad146, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701453

RESUMO

Crape myrtle (Lagerstroemia indica) is a globally used ornamental woody plant and is the representative species of Lagerstroemia. However, studies on the evolution and genomic breeding of L. indica have been hindered by the lack of a reference genome. Here we assembled the first high-quality genome of L. indica using PacBio combined with Hi-C scaffolding to anchor the 329.14-Mb genome assembly into 24 pseudochromosomes. We detected a previously undescribed independent whole-genome triplication event occurring 35.5 million years ago in L. indica following its divergence from Punica granatum. After resequencing 73 accessions of Lagerstroemia, the main parents of modern crape myrtle cultivars were found to be L. indica and L. fauriei. During the process of domestication, genetic diversity tended to decrease in many plants, but this was not observed in L. indica. We constructed a high-density genetic linkage map with an average map distance of 0.33 cM. Furthermore, we integrated the results of quantitative trait locus (QTL) using genetic mapping and bulk segregant analysis (BSA), revealing that the major-effect interval controlling internode length (IL) is located on chr1, which contains CDL15, CRG98, and GID1b1 associated with the phytohormone pathways. Analysis of gene expression of the red, purple, and white flower-colour flavonoid pathways revealed that differential expression of multiple genes determined the flower colour of L. indica, with white flowers having the lowest gene expression. In addition, BSA of purple- and green-leaved individuals of populations of L. indica was performed, and the leaf colour loci were mapped to chr12 and chr17. Within these intervals, we identified MYB35, NCED, and KAS1. Our genome assembly provided a foundation for investigating the evolution, population structure, and differentiation of Myrtaceae species and accelerating the molecular breeding of L. indica.

12.
Front Plant Sci ; 13: 1006360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212383

RESUMO

Transcription factors encoded by the three-amino-acid-loop-extension (TALE) gene family play a key role in regulating plant growth and development, and are involved in plant hormone regulatory pathways and responses to various environmental stresses. Researchers are currently studying TALE genes in different species, but Prunus mume TALE genes have not yet been studied. Therefore, based on the P. mume genome, we found a total of 23 TALE gene family members, which were distributed on eight chromosomes. TALE genes contained the characteristic domains of this family, and could be divided into KNOTTED-like homeobox (KNOX) subfamily and BEL1-like homeobox (BELL) subfamily. They can form heterodimers with each other. Fragment duplication and tandem duplication events were the main reasons for the expansion of P. mume TALE gene family members and the TALE genes were selected by different degrees of purification. The inter-species collinearity analysis showed that the relationship between P. mume and other four Prunus species was consistent with the distance of origin. Eleven members of P. mume TALE genes were specifically highly expressed in stem, mainly at the early stage of stem development. The cis-element analysis showed that the promoter of P. mume TALE genes contained a variety of hormone and abiotic stress response elements, and four TALE genes responded to two kinds of abiotic stresses and four kinds of hormones at the early stage of stem development. In conclusion, this study lays a foundation to explore the role of TALE gene family in P. mume growth and development.

13.
Plant Physiol Biochem ; 151: 69-76, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32200192

RESUMO

The basic region/leucine zipper (bZIP) transcription factors play key roles in regulating diverse biological processes in plants. However, their participation in shoot branching has been rarely reported. Here, we isolated a CmbZIP1 transcription factor gene, a member of the bZIP family, from chrysanthemum. Subcellular localization analysis indicated that CmbZIP1 is a nuclear protein. Tissue-specific expression analysis indicated that CmbZIP1 was principally expressed in apical bud and axillary bud. Expression patterns analysis results showed that CmbZIP1 expression was suppressed in axillary buds in response to decapitation but increased in response to shade. Overexpression of CmbZIP1 in Arabidopsis inhibits its shoot branching. In addition, expression of auxin efflux protein PIN-FORMED 1 (PIN1) and auxin signaling components AUXIN RESISTANT 1/3 (AXR1, AXR3) were significantly up-regulated in overexpressing plants in comparison with wild type plants. Moreover, the transcript expression of BRANCHED 2 (AtBRC2) was also significantly up-regulated in overexpressing plants compared with the wild type. Altogether, these results suggest important and negative roles of CmbZIP1 in shoot branching. Our study extends the understanding of the function of bZIP transcription factors in plants and provides valuable gene resources for improving the architectural traits of ornamental plants.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Chrysanthemum/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/fisiologia , Plantas Geneticamente Modificadas
14.
PLoS One ; 14(11): e0225241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31774840

RESUMO

The prostrate cultivars of ground-cover chrysanthemum have been used in landscape gardening due to their small stature, large crown width and strong branching ability. qRT-PCR is a rapid and powerful tool for gene expression analysis, while its accuracy highly depends on the stability of reference genes. The paucity of authentic reference genes presents a major hurdle in understanding the genetic regulators of prostrate architecture. Therefore, in order to reveal the regulatory mechanism of prostrate growth of chrysanthemum stems, here, stable reference genes were selected for expression analysis of key genes involved in shoot development and graviresponse. Based on transcriptome data, eleven reference genes with relatively stable expression were identified as the candidate reference genes. After the comprehensive analysis of the stability of these reference genes with four programs (geNorm, NormFinder, BestKeeper and RefFinder), we found that TIP41 was the most stable reference gene in all of the samples. SAND was determined as a superior reference gene in different genotypes and during the process of shoot development. The optimal reference gene for gravitropic response was PP2A-1. In addition, the expression patterns of LA1 and PIN1 further verified the reliability of the screened reference genes. These results can provide more accurate and reliable qRT-PCR normalization for future studies on the expression patterns of genes regulating plant architecture of chrysanthemums.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Chrysanthemum/genética , Perfilação da Expressão Gênica/normas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Padrões de Referência
15.
Sci Rep ; 8(1): 5090, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572446

RESUMO

Bud dormancy transition is a vital developmental process for perennial plant survival. The process is precisely regulated by diverse endogenous genetic factors and environmental cues, but the mechanisms are not yet fully understood. Prunus mume is an ideal crop for bud dormancy analysis because of its early spring-flowering characteristics and small sequenced genome. Here, we analyzed the transcriptome profiles at the three endodormancy stages and natural flush stage using RNA sequencing combined with phytohormone and sugar content measurements. Significant alterations in hormone contents and carbohydrate metabolism have been observed, and α-amylases, Glucan Hydrolase Family 17 and diphosphate-glycosyltransferase family might play crucial roles in the interactions between hormones and sugars. The following hypothetical model for understanding the molecular mechanism of bud dormancy in Prunus mume is proposed: low temperatures exposure induces the significant up-regulation of eight C-repeat binding factor genes, which directly promotes all six dormancy-associated MADS-box genes, resulting in dormancy establishment. The prolonged cold and/or subsequently increasing temperature then decreases the expression levels of these two gene families, which alleviates the inhibition of FLOWERING LOCUS T and reopens the growth-promoting pathway, resulting in dormancy release and the initiation of the bud break process.


Assuntos
Dormência de Plantas , Reguladores de Crescimento de Plantas/análise , Prunus/crescimento & desenvolvimento , Prunus/genética , Açúcares/análise , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Análise de Sequência de RNA , Temperatura , Transcriptoma
16.
Nat Commun ; 9(1): 1702, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703940

RESUMO

Mei (Prunus mume) is an ornamental woody plant that has been domesticated in East Asia for thousands of years. High diversity in floral traits, along with its recent genome sequence, makes mei an ideal model system for studying the evolution of woody plants. Here, we investigate the genetic architecture of floral traits in mei and its domestication history by sampling and resequencing a total of 351 samples including 348 mei accessions and three other Prunus species at an average sequencing depth of 19.3×. Highly-admixed population structure and introgression from Prunus species are identified in mei accessions. Through a genome-wide association study (GWAS), we identify significant quantitative traits locus (QTLs) and genomic regions where several genes, such as MYB108, are positively associated with petal color, stigma color, calyx color, and bud color. Results from this study shed light on the genetic basis of domestication in flowering plants, particularly woody plants.


Assuntos
Flores/genética , Genoma de Planta/genética , Fenótipo , Prunus/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Domesticação , Estudo de Associação Genômica Ampla , Filogenia , Análise de Sequência de RNA
17.
Sci Rep ; 6: 36664, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819357

RESUMO

Post-pollination processes can lead to nonrandom mating among compatible pollen donors. Moreover, morphological patterns of ovule development within linear fruits are reportedly nonrandom and depend on ovule position. However, little is known about the relationship between nonrandom mating and ovule position within linear fruit. Here, we combined controlled pollen competition experiments and paternity analyses on R. pseudoacacia to better understand nonrandom mating and its connection with ovule position. Molecular determination of siring success showed a significant departure from the expected ratio based on each kind of pollen mixture, suggesting a nonrandom mating. Outcrossed pollen grains, which were strongly favored, produced significantly more progeny than other pollen grains. Paternity analyses further revealed that the distribution of offspring produced by one specific pollen source was also nonrandom within linear fruit. The stylar end, which has a higher probability of maturation, produced a significantly higher number of outcrossed offspring than other offspring, suggesting a correlation between pollen source and ovule position. Our results suggested that a superior ovule position exists within the linear fruit in R. pseudoacacia, and the pollen that was strongly favored often preferentially occupies the ovules that were situated in a superior position, which ensured siring success and facilitated nonrandom mating.


Assuntos
Frutas/anatomia & histologia , Óvulo Vegetal/anatomia & histologia , Pólen/fisiologia , Robinia/fisiologia , Animais , Reprodução
18.
Front Plant Sci ; 7: 557, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200031

RESUMO

Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa.

19.
Front Plant Sci ; 6: 694, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442011

RESUMO

Chrysanthemum (Dendranthema grandiflorum cv. Jinba) shoot branching is determined by bud outgrowth during the vegetative growth stage. The degree of axillary bud outgrowth is highly influenced by environmental conditions, such as nutrient availability. Here, we demonstrated that phosphorus (Pi) starvation significantly reduces axillary bud outgrowth in chrysanthemum. A strigolactone (SL) biosynthesis gene, DgCCD7, was isolated and characterized as an ortholog of MAX3/DAD3/RMS5/D17. By using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), three putative SLs were identified and levels of all three SLs showed strong increase under Pi starvation conditions. Determinations of the distribution of SLs and regulation of DgCCD7/8 in response to Pi changes in root indicate that SL acts systemically. However, temporal expression patterns of biosynthesis and signaling genes in nodes revealed that Pi starvation causes a local response of SL pathway. Treatment of node segments with or without auxin and Pi revealed that in the absence of exogenous auxin, Pi delayed axillary buds outgrowth and up-regulated local SL pathway genes. These data indicated that an auxin-SL regulatory loop responded to Pi starvation for delaying bud outgrowth locally, root biosynthesized SLs were transported acropetally and functioned in shoot branching inhibition under Pi starvation. We proposed that SLs contributed to chrysanthemum shoot branching control in response to Pi-limiting conditions in a systemic way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA