Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37765839

RESUMO

This study investigates the utilization of a stepped wave frequency modulation jamming technique in radar systems. The objective is to enhance the effectiveness and robustness of false target jamming in the presence of linear frequency modulation (LFM) radars employing constant false alarm rate (CFAR) detection. The proposed method combines stepped frequency modulation with full pulse delay/sum repeat jamming to enhance resilience against uncertainties in target parameters. Theoretical analysis and simulation experiments are conducted to establish relationships between key jammer parameters, such as frequency slope and power compensation, and performance metrics, like false target distribution and CFAR masking. The results demonstrate that the proposed technique effectively maintains a dense distribution of false targets surrounding the protected target, even in the presence of uncertainties in position and signal-to-noise ratio. In comparison to existing methods, the utilization of stepped-waveform modulation enables improved control over target distribution and CFAR masking. Adaptive power allocation compensates for parameter errors, thereby enhancing robustness. Simulation results reveal that the proposed approach significantly reduces the probability of detecting the true target by over 95% under uncertain conditions, while previous methods experienced degradation. The integration of stepped waveforms optimizes false target jamming, thereby advancing electronic warfare capabilities in countering advanced radar threats. This study establishes design principles for resilient jamming architectures and supports enhanced survivability against radars employing pulse compression and CFAR detection. Moreover, the concepts proposed in this study have the potential for extension to emerging radar waveforms.

2.
Sensors (Basel) ; 19(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646529

RESUMO

Superpixel methods are widely used in the processing of synthetic aperture radar (SAR) images. In recent years, a number of superpixel algorithms for SAR images have been proposed, and have achieved acceptable results despite the inherent speckle noise of SAR images. However, it is still difficult for existing algorithms to obtain satisfactory results in the inhomogeneous edge and texture areas. To overcome those problems, we propose a superpixel generating method based on pixel saliency difference and spatial distance for SAR images in this article. Firstly, a saliency map is calculated based on the Gaussian kernel function weighted local contrast measure, which can not only effectively suppress the speckle noise, but also enhance the fuzzy edges and regions with intensity inhomogeneity. Secondly, superpixels are generated by the local k-means clustering method based on the proposed distance measure, which can efficiently sort pixels to different clusters. In this step, the distance measure is calculated by combining the saliency difference and spatial distance with a proposed adaptive local compactness parameter. Thirdly, post-processing is utilized to clean up small segments. The evaluation experiments on the simulated SAR image demonstrate that our proposed method dramatically outperforms four state-of-the-art methods in terms of boundary recall, under-segmentation error, and achievable segmentation accuracy under almost all of the experimental parameters at a moderate segment speed. The experiments on real-world SAR images of different sceneries validate the superiority of our method. The superpixel results of the proposed method adhere well to the contour of targets, and correctly reflect the boundaries of texture details for the inhomogeneous regions.

3.
Sensors (Basel) ; 18(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213028

RESUMO

In order to improve the angle measurement performance of a coprime linear array, this paper proposes a novel direction-of-arrival (DOA) estimation algorithm for a coprime linear array based on the multiple invariance estimation of signal parameters via rotational invariance techniques (MI-ESPRIT) and a lookup table method. The proposed algorithm does not require a spatial spectrum search and uses a lookup table to solve ambiguity, which reduces the computational complexity. To fully use the subarray elements, the DOA estimation precision is higher compared with existing algorithms. Moreover, the algorithm avoids the matching error when multiple signals exist by using the relationship between the signal subspace of two subarrays. Simulation results verify the effectiveness of the proposed algorithm.

4.
Sensors (Basel) ; 18(11)2018 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30423864

RESUMO

Inshore ship detection is an important research direction of synthetic aperture radar (SAR) images. Due to the effects of speckle noise, land clutters and low signal-to-noise ratio, it is still challenging to achieve effective detection of inshore ships. To solve these issues, an inshore ship detection method based on the level set method and visual saliency is proposed in this paper. First, the image is fast initialized through down-sampling. Second, saliency map is calculated by improved local contrast measure (ILCM). Third, an improved level set method based on saliency map is proposed. The saliency map has a higher signal-to-noise ratio and the local level set method can effectively segment images with intensity inhomogeneity. In this way, the improved level set method has a better segmentation result. Then, candidate targets are obtained after the adaptive threshold. Finally, discrimination is employed to get the final result of ship targets. The experiments on a number of SAR images demonstrate that the proposed method can detect ship targets with reasonable accuracy and integrity.

5.
Opt Express ; 20(27): 28347-52, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263069

RESUMO

A new type of multi-layer metamaterial (MM) absorber is represented in this paper, which behave as a dielectric slab in transmission band and act as an absorber in another lower band. The equivalent circuit model of each layer in this MM absorber has been established. The transmission line (TL) model is introduced to analysis the mechanism of electromagnetic wave traveling through this MM absorber. Both theoretical and experimental results indicate this MM absorber has a transmission band at 21GHz and an absorptive band from 5GHz to 13GHz. A good match of TL model results and measurement results verified the validity of TL model in analyzing and optimizing the performances of this kind of absorber.


Assuntos
Eletrônica/instrumentação , Modelos Teóricos , Refratometria/instrumentação , Telecomunicações/instrumentação , Absorção , Simulação por Computador , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
6.
Sci Rep ; 11(1): 6386, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737715

RESUMO

Deep neural networks have shown great performance for direction-of-arrival (DOA) estimation problem, but it is necessary to design some suitable networks to solve the multi-DOA estimation problem. In this paper, we use Khatri-Rao product to increase the degree of freedom of antenna array and obtain the image tensor of covariance matrix, then we propose an improved estimation network to process the tensor. We use the curriculum learning scheme and partial label strategy to develop a CurriculumNet training scheme. The training/validation results shows that the proposed training scheme can increase the generalization of the estimation network and improve the accuracy of network around [Formula: see text]. The estimation performance of the proposed network shows high-resolution results, which can distinguish two adjacent signals with angle difference of [Formula: see text]. Moreover, the proposed estimation network has root mean square estimation error lower than [Formula: see text] when signal noise ratio equals [Formula: see text] and can estimate DOAs precisely by only 8 snapshots, which performs much better than prior deep neural network based estimation methods and can estimate multi-DOA results under hostile estimation environments.

7.
Opt Express ; 17(5): 3581-6, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259197

RESUMO

An approach to design an invisible cloak with controlled constitutive parameters and arbitrary shaped boundaries is presented. Helmholtz's equation is adopted to establish a mapping between original and transformed coordinates inside the cloak. Then the constitutive parameters are obtained by the established mapping. The analytical solution of a regular cloak and the numerical solution of an irregular cloak both verify that that our method will guide electromagnetic wave efficiently and control the constitutive parameters of the cloak conveniently. It has great significance in realizing a cloak practically.

8.
Opt Express ; 17(10): 7800-6, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19434111

RESUMO

We theoretically deduce the Bragg gap vanishing conditions in one-dimensional photonic crystals and experimentally demonstrate the m=0 band-gap vanishing phenomena at microwave frequencies. In the case of mismatched impedance, the Bragg gap will vanish as long as the discrete modes appear in photonic crystals containing dispersive materials, while for the matched impedance cases, Bragg gaps will always disappear. The experimental results and the simulations agree extremely well with the theoretical expectation.

9.
Materials (Basel) ; 12(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533324

RESUMO

In this paper, a dual-band terahertz absorber with two passbands is proposed. The absorber is composed of periodic patterned graphene arrays on the top of a SiO 2 substrate and a frequency selective surface (FSS) on the bottom of the substrate. The simulated results indicate that there are two absorption bands (absorption greater than 90%) ranging from 0.54 to 0.84 THz and 2.13 to 2.29 THz. It is almost transparent to incident waves (transmission greater than 50%) below 0.19 THz and between 1.3 and 1.67 THz with a center frequency of 1.49 THz. The absorber has a good tolerance to the transverse electric (TE) and transverse magnetic (TM) polarized wave oblique incidence, and the transmission rate of the passbands remains greater than 50% within 70 degrees. Moreover, the absorption rate of the absorber can be tuned by the chemical potential of graphene. The structure with absorption and transmission properties has potential applications in filtering, sensing, detecting and antenna stealth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA