Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Opt Lett ; 48(7): 1590-1593, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221717

RESUMO

Sub-diffraction-limit quasi-non-diffracting light sheets (SQLSs) are crucial for a resolution-enhanced and field of view (FOV)-enlarged light sheet microscope. However, it has aways been plagued by sidelobes inducing severe background noise. Here, a self-trade-off optimized method is proposed to generate sidelobe-suppressed SQLSs based on super-oscillatory lenses (SOLs). An SQLS thus obtained shows sidelobes of only 15.4%, first realizing the sub-diffraction-limit thickness, quasi-non-diffracting characteristic, and suppressed sidelobes simultaneously for static light sheets. Moreover, a window-like energy allocation is realized by the self-trade-off optimized method, successfully further suppressing the sidelobes. In particular, an SQLS with theoretical sidelobes of 7.6% is achieved within the window, which provides a new strategy to deal with sidelobes for light sheets and shows great potential in high signal-to-noise ratio light sheet microscopy (LSM).

2.
Opt Lett ; 47(13): 3267-3270, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776602

RESUMO

Static light sheets are widely used in various super-resolution three-dimensional (3D) imaging applications. Here, a multifocal diffraction-free optimized design method is proposed for super-oscillatory lenses (SOLs) owning an enlarged field of view (FOV) to generate sub-diffraction-limit light sheets with reduced divergence. Various propagation lengths of sub-diffraction-limit thickness for light sheets can be obtained by adopting corresponding numbers of discrete foci and spacing between them. In particular, the propagation lengths of 150.4λ and 118.9λ are obtained by SOLs with an enlarged FOV of 150λ and 820λ, respectively, which show the longest depth of focus (DOF), as far as we know, and are the first to realize the combination of enlarged DOF and FOV for SOLs. We show a way of using binary-amplitude modulation to generate static light sheets with sub-diffraction-limit thickness and reduced divergence, which is simple, easy to integrate, and sidelobe-suppressed.

3.
Opt Lett ; 47(18): 4758-4761, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107083

RESUMO

We propose a non-paraxial diffraction model of the digital micromirror device (DMD) by combining the conventional Fraunhofer diffraction and a simple method of coordinative mapping. It is equivalent to adding aberrations of diffracted wave fields to the aberration-free Fraunhofer diffraction instead of complex integral calculations, allowing the simulated diffraction patterns to be consistent with the actual experimental counterparts. Moreover, it is verified by the experiments and literature that the diffraction angles, orders, and efficiency can all be well predicted for arbitrary incident angles and wavelengths. Especially for diffracted zenith angles within 50°, the predicted values reveal ∼1% error, and in a broader range, the predicted errors of diffracted azimuth angles are less than 4%. To the best of our knowledge, it is the first model capable of describing the non-paraxial diffraction behavior of the DMD. The proposed model with universality and effectiveness will help users to optimally construct DMD-based optical systems by guiding optical layouts, selection of light sources, and utilization and suppression of diffraction effects.

4.
Langmuir ; 38(50): 15570-15578, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36480432

RESUMO

Biomimetic riblet surfaces, such as blade, wavy, sinusoidal, and herringbone riblet surfaces, have widespread applications for drag reduction in the energy, transportation, and biomedicine industries. The drag reduction ability of a blade riblet surface is sensitive to the yaw angle, which is the angle between the design direction of the riblet surface and the average flow direction. In practical applications, the average flow direction is often misaligned with the design direction of riblet surfaces with different morphologies and arrangements. However, previous studies have not reported on the drag reduction characteristics and regularities related to the yaw angle for surfaces with complex riblet microstructures. For the first time, we systematically investigated the aerodynamic drag reduction characteristics of blade, wavy, sinusoidal, and herringbone riblet surfaces affected by different yaw angles. A precisely adjustable yaw angle measurement method was proposed based on a closed air channel. Our results revealed the aerodynamic behavior regularities of various riblet surfaces as affected by yaw angles and Reynolds numbers. Riblet surfaces with optimal air drag reduction were obtained in yaw angles ranging from 0 to 60° and Reynolds numbers ranging from 4000 to 7000. To evaluate the effects of the yaw angle, we proposed a criterion based on the actual spanwise spacing (d+) of microstructure surfaces with the same phase in a near-wall airflow field. Finally, we established conceptual models of aerodynamic behaviors for different riblet surfaces in response to changes in the airflow direction. Our research lays a foundation for practical various riblet surface applications influenced by yaw angles to reduce air drag.


Assuntos
Hidrodinâmica , Modelos Teóricos
5.
Langmuir ; 37(40): 11851-11858, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34585928

RESUMO

Ice accumulation causes great risks to aircraft, electric power lines, and wind-turbine blades. For the ice accumulation on structural surfaces, ice adhesion force is a crucial factor, which generally has two main sources, for exampple, electrostatic force and mechanical interlocking. Herein, we present that surface acoustic waves (SAWs) can be applied to minimize ice adhesion by simultaneously reducing electrostatic force and mechanical interlocking, and generating interface heating effect. A theoretical model of ice adhesion considering the effect of SAWs is first established. Experimental studies proved that the combination of nanoscale vibration and interface heating effects lead to the reduction of ice adhesion on the substrate. With the increase of SAW power, the electrostatic force decreases due to the increase of dipole spacings, which is mainly attributed to the SAW induced nanoscale surface vibration. The interface heating effect leads to the transition of the locally interfacial contact phase from solid-solid to solid-liquid, hence reducing the mechanical interlocking of ice. This study presents a strategy of using SAWs device for ice adhesion reduction, and results show a considerable potential for application in deicing.

6.
Opt Lett ; 44(4): 963-966, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30768031

RESUMO

A broadband optical absorber based on the nanostructured germanium (Ge) film composed of single-sized circular nanodisk-nanohole arrays is proposed, which demonstrates high efficiency, strong polarization independence, and large viewing angle. Due to the electric and magnetic resonance absorption modes excited by the nanostructure arrays in highly lossy Ge film, the absorber obtains a high absorptivity, reaching above 90% over the full visible wavelength, and it can be maintained well at a large viewing angle over ±50°. Based on the geometrical symmetry, the absorber is proved to be polarization independent. Moreover, the simple single-sized nanostructure within a certain size tolerance decreases the design and fabrication complexity. The structural configuration with a slight Ge sidewall formed in the nanofabrication process could enhance the overall light absorption. These results indicate that the proposed broadband absorber has great potential in various applications such as anti-reflective coating and perfect cloaking.

7.
Sensors (Basel) ; 19(18)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500318

RESUMO

A zero-cross detection algorithm was proposed for the cavity-length interrogation of fiber-optic Fabry-Perot (FP) sensors. The method can avoid the inaccuracy of peak determination in the conventional peak-to-peak method for the cavity-length interrogation of fiber-optic FP sensors caused by the slow variation of the spectral power density in peak neighboring regions. Both simulations and experiments were carried out to investigate the feasibility and performance of the zero-cross detection algorithm. Fiber-optic FP sensors with cavity lengths in the range of 150-1000 µm were successfully interrogated with a maximum error of 0.083 µm.

8.
Opt Lett ; 43(2): 206-209, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29328239

RESUMO

Slit arrays based on noble metals have been widely proposed as planar transverse-magnetic (TM)-lenses, illuminated by a linearly polarized light with the polarization perpendicular to slits and implementing the focusing capability beyond the diffraction limit. However, due to intrinsic plasmonic losses, these TM-lenses cannot work efficiently in the ultraviolet wavelengths. In this Letter, taking advantage of the unique transmission through metallic slits not involving plasmonic losses, a metallic slit array with transverse-electric (TE)-polarized design is proposed, showing for the first time, to the best of our knowledge, the realization of sub-diffraction-limit focusing for ultraviolet light. Additionally, in contrast to the situations of TM-lenses, a wider slit leads to a greater phase delay and much larger slits can be arranged to construct the TE-lenses, which is quite beneficial for practical fabrication. Furthermore, deep-subwavelength focusing can be achieved by utilizing the immersing technology.

9.
Sensors (Basel) ; 18(8)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111724

RESUMO

A micro-floating element wall shear stress sensor with backside connections has been developed for accurate measurements of wall shear stress under the turbulent boundary layer. The micro-sensor was designed and fabricated on a 10.16 cm SOI (Silicon on Insulator) wafer by MEMS (Micro-Electro-Mechanical System) processing technology. Then, it was calibrated by a wind tunnel setup over a range of 0 Pa to 65 Pa. The measurements of wall shear stress on a smooth plate were carried out in a 0.6 m × 0.6 m transonic wind tunnel. Flow speed ranges from 0.4 Ma to 0.8 Ma, with a corresponding Reynold number of 1.05 × 106~1.55 × 106 at the micro-sensor location. Wall shear stress measured by the micro-sensor has a range of about 34 Pa to 93 Pa, which is consistent with theoretical values. For comparisons, a Preston tube was also used to measure wall shear stress at the same time. The results show that wall shear stress obtained by three methods (the micro-sensor, a Preston tube, and theoretical results) are well agreed with each other.

10.
Langmuir ; 33(16): 3949-3953, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28394611

RESUMO

Re-entrant microstructures exhibit excellent wetting stability under different pressure levels, but the underlying mechanism determined by wetting transition behavior at the microscale level remains unclear. We propose the "wetting chip" method for in situ assessment of the dynamic behavior of wetting transition in re-entrant microstructures. High sag and transverse depinning were observed in re-entrant microstructures. Analysis indicated that high sag and transverse depinning mainly influenced the stability of the structures. The threshold pressure and longevity of wetting transition were predicted and experimentally verified. The design criteria of wetting stability, including small geometry design, hydrophobic material selection, and sidewall condition, were also presented. The proposed method and model can be applied to different shapes and geometry microstructures to elucidate wetting stability.

11.
Sensors (Basel) ; 17(10)2017 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-29065498

RESUMO

A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off.

12.
Opt Express ; 24(3): 1924-33, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906769

RESUMO

Sub-diffraction-limit optical needle can be created by a binary amplitude mask through tailoring the interference of diffraction beams. In this paper, a controllable design of super-oscillatory planar lenses to create sub-diffraction-limit optical needles with the tunable focal length and depth of focus (DOF) is presented. As a high-quality optical needle is influenced by various factors, we first propose a multi-objective and multi-constraint optimization model compromising all the main factors to achieve a needle with the prescribed characteristics. The optimizing procedure is self-designed using the Matlab programming language based on the genetic algorithm (GA) and fast Hankel transform algorithm. Numerical simulations show that the optical needles' properties can be controlled accurately. The optimized results are further validated by the theoretical calculation with the Rayleigh-Sommerfeld integral. The sub-diffraction-limit optical needles can be used in wide fields such as optical nanofabrication, super-resolution imaging, particle acceleration and high-density optical data storage.

13.
Opt Express ; 23(15): 20124-31, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367670

RESUMO

We report a metallic planar lens based on the coupled nanoslits with variable widths for superfocusing. The influence of the interaction between two adjacent nanoslits on the phase delay is systematically investigated using the finite-difference time-domain (FDTD) method. Based on the geometrical optics and the wavefront reconstruction theory, an array of nanoslits perforated in a gold film is optimally designed to achieve the desired phase modulation for light beaming. The simulation result verifies our design in excellent agreement and the realized metallic lens reveals the superfocusing capability of 0.38λ in resolution, well beyond the diffraction limit.

14.
Sensors (Basel) ; 15(11): 27590-610, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26528980

RESUMO

In this paper, the performance of two Kalman filter (KF) schemes based on the direct estimated model and differencing estimated model for input rate signal was thoroughly analyzed and compared for combining measurements of a sensor array to improve the accuracy of microelectromechanical system (MEMS) gyroscopes. The principles for noise reduction were presented and KF algorithms were designed to obtain the optimal rate signal estimates. The input rate signal in the direct estimated KF model was modeled with a random walk process and treated as the estimated system state. In the differencing estimated KF model, a differencing operation was established between outputs of the gyroscope array, and then the optimal estimation of input rate signal was achieved by compensating for the estimations of bias drifts for the component gyroscopes. Finally, dynamic simulations and experiments with a six-gyroscope array were implemented to compare the dynamic performance of the two KF models. The 1σ error of the gyroscopes was reduced from 1.4558°/s to 0.1203°/s by the direct estimated KF model in a constant rate test and to 0.5974°/s by the differencing estimated KF model. The estimated rate signal filtered by both models could reflect the amplitude variation of the input signal in the swing rate test and displayed a reduction factor of about three for the 1σ noise. Results illustrate that the performance of the direct estimated KF model is much higher than that of the differencing estimated KF model, with a constant input signal or lower dynamic variation. A similarity in the two KFs' performance is observed if the input signal has a high dynamic variation.

15.
Sensors (Basel) ; 15(8): 20140-51, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26287208

RESUMO

In this work, we report a new design for an electrostatically actuated microgripper with a post-assembly self-locking mechanism. The microgripper arms are driven by rotary comb actuators, enabling the microgripper to grip objects of any size from 0 to 100 µm. The post-assembly mechanism is driven by elastic deformation energy and static electricity to produce self-locking and releasing actions. The mechanism enables the microgripper arms to grip for long periods without continuously applying the external driving signal, which significantly reduces the effects and damage to the gripped objects caused by these external driving signals. The microgripper was fabricated using a Silicon-On-Insulator (SOI) wafer with a 30 µm structural layer. Test results show that this gripper achieves a displacement of 100 µm with a driving voltage of 33 V, and a metal wire with a diameter of about 1.6 mil is successfully gripped to demonstrate the feasibility of this post-assembly self-locking mechanism.


Assuntos
Microtecnologia/instrumentação , Simulação por Computador , Eletricidade , Eletrônica , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Silício/química , Estresse Mecânico
16.
ACS Appl Bio Mater ; 7(1): 17-43, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091514

RESUMO

3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.


Assuntos
Bioimpressão , Humanos , Impressão Tridimensional , Engenharia Tecidual , Materiais Biocompatíveis
17.
Micromachines (Basel) ; 14(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37763867

RESUMO

A VCF-based mode-matching micromachine-optimized tuning fork gyroscope is proposed to not only maximize the scale factor of the device, but also avoid use of an additional quadrature-nulling loop to prevent structure complexity, pick-up electrode occupation, and coupling with a mode-matching loop. In detail, a mode-matching, closed-loop system without a quadrature-nulling loop is established, and the corresponding convergence and matching error are quantitatively analyzed. The optimal straight beam of the gyro structure is then modeled to significantly reduce the quadrature coupling. The test results show that the frequency split is narrowed from 20 Hz to 0.014 Hz. The scale factor is improved 20.6 times and the bias instability (BI) is suppressed 3.28 times. The observed matching accuracy demonstrates that a mode matching system without a quadrature suppression loop is feasible and that the proposed device represents a competitive design for a mode-matching gyroscope.

18.
Nat Commun ; 14(1): 5107, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607942

RESUMO

Planar super-oscillatory lens (SOL), a far-field subwavelength-focusing diffractive device, holds great potential for achieving sub-diffraction-limit imaging at multiple wavelengths. However, conventional SOL devices suffer from a numerical-aperture-related intrinsic tradeoff among the depth of focus (DoF), chromatic dispersion and focusing spot size. Here, we apply a multi-objective genetic algorithm (GA) optimization approach to design an apochromatic binary-phase SOL having a prolonged DoF, customized working distance (WD), minimized main-lobe size, and suppressed side-lobe intensity. Experimental implementation demonstrates simultaneous focusing of blue, green and red light beams into an optical needle of ~0.5λ in diameter and DOF > 10λ at WD = 428 µm. By integrating this SOL device with a commercial fluorescence microscope, we perform, for the first time, three-dimensional super-resolution multicolor fluorescence imaging of the "unseen" fine structures of neurons. The present study provides not only a practical route to far-field multicolor super-resolution imaging but also a viable approach for constructing imaging systems avoiding complex sample positioning and unfavorable photobleaching.

19.
ACS Nano ; 17(16): 16160-16173, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37523784

RESUMO

There is huge demand for recreating human skin with the functions of epidermis and dermis for interactions with the physical world. Herein, a biomimetic, ultrasensitive, and multifunctional hydrogel-based electronic skin (BHES) was proposed. Its epidermis function was mimicked using poly(ethylene terephthalate) with nanoscale wrinkles, enabling accurate identification of materials through the capabilities to gain/lose electrons during contact electrification. Internal mechanoreceptor was mimicked by interdigital silver electrodes with stick-slip sensing capabilities to identify textures/roughness. The dermis function was mimicked by patterned microcone hydrogel, achieving pressure sensors with high sensitivity (17.32 mV/Pa), large pressure range (20-5000 Pa), low detection limit, and fast response (10 ms)/recovery time (17 ms). Assisted by deep learning, this BHES achieved high accuracy and minimized interference in identifying materials (95.00% for 10 materials) and textures (97.20% for four roughness cases). By integrating signal acquisition/processing circuits, a wearable drone control system was demonstrated with three-degree-of-freedom movement and enormous potentials for soft robots, self-powered human-machine interaction interfaces of digital twins.


Assuntos
Aprendizado Profundo , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis , Biomimética , Pele
20.
ACS Appl Mater Interfaces ; 15(29): 35648-35663, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432769

RESUMO

Moisture condensation, fogging, and frost or ice formation on structural surfaces cause severe hazards in many industrial components such as aircraft wings, electric power lines, and wind-turbine blades. Surface-acoustic-wave (SAW) technology, which is based on generating and monitoring acoustic waves propagating along structural surfaces, is one of the most promising techniques for monitoring, predicting, and also eliminating these hazards occurring on these surfaces in a cold environment. Monitoring condensation and frost/ice formation using SAW devices is challenging in practical scenarios including sleet, snow, cold rain, strong wind, and low pressure, and such a detection in various ambient conditions can be complex and requires consideration of various key influencing factors. Herein, the influences of various individual factors such as temperature, humidity, and water vapor pressure, as well as combined or multienvironmental dynamic factors, are investigated, all of which lead to either adsorption of water molecules, condensation, and/or frost/ice in a cold environment on the SAW devices. The influences of these parameters on the frequency shifts of the resonant SAW devices are systematically analyzed. Complemented with experimental studies and data from the literature, relationships among the frequency shifts and changes of temperature and other key factors influencing the dynamic phase transitions of water vapor on SAW devices are investigated to provide important guidance for icing detection and monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA