RESUMO
A novel aromatic diamine containing pyridyl side group, 4-pyridine-4,4-bis(3,5-dimethyl-5-aminophenyl)methane (PyDPM), was successfully synthesized via electrophilic substitution reaction. The polyimides (PIs) containing pyridine were obtained via the microwave-assisted one-step polycondensation of the PyDPM with pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3',4,4'-diphenylether tetracarboxylic dianhydride (ODPA) and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). Contrarily to the reported similar PIs, these PIs exhibit much higher thermal stability or heat resistance, i.e. high glass transition temperatures (T gs) in the range of 358-473°C, and the decomposition temperatures at 5% weight loss over 476°C under nitrogen. They can afford flexible and strong films with tensile strength of 82.1-93.3 MPa, elongation at break of 3.7%-15.2%, and Young's modulus of 3.3-3.8 GPa. Furthermore, The PI films exhibit good optical transparency with the cut-off wavelength at 313-366 nm and transmittance higher than 73% at 450 nm. The excellent thermal and optical transmittance can be attributed to synthesis method and the introduction of pyridine rings and ortho-methyl groups. The inherent viscosities of PIs via one-step method were found to be 0.58-1.12 dl g-1 in DMAc, much higher than those via two-step method. These results indicate these PIs could be potential candidates for optical substrates of organic light emitting diodes (OLEDs).
RESUMO
To provide self-healing epoxy composite with adequate heat resistance for high-performance application, we developed a novel microencapsulated epoxy/mercaptan healing agent. The key measure lies in usage of diglycidyl ether of bisphenol A (EPON 828) as the polymerizable component and 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30) as the catalyst. Because of the higher thermal stability of EPON 828 and lower volatility of DMP-30, the healing agent and the self-healing composite not only survive high-temperature curing and thermal exposure, but also offer satisfactory capability of autonomous properties restoration, as characterized by both fracture mechanics and fatigue tests. Especially when the operation temperature is not higher than 200 °C, the performance of the healing system is nearly independent of thermal history.