Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Diabetologia ; 59(9): 1834-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27053238

RESUMO

The generation of beta(-like) cells to compensate for their absolute or relative shortage in type 1 and type 2 diabetes is an obvious therapeutic strategy. Patients first received grafts of donor islet cells over 25 years ago, but this procedure has not become routine in clinical practice because of a donor cell shortage and (auto)immune problems. Transplantation of differentiated embryonic and induced pluripotent stem cells may overcome some but not all the current limitations. Reprogramming exocrine cells towards functional beta(-like) cells would offer an alternative abundant and autologous source of beta(-like) cells. This review focuses on work by our research group towards achieving such a source of cells. It summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).


Assuntos
Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Pâncreas/citologia , Animais , Diferenciação Celular/fisiologia , Humanos , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo
2.
Diabetologia ; 57(7): 1420-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24759958

RESUMO

AIMS/HYPOTHESIS: IL-6 was recently shown to control alpha cell expansion. As beta cells expand following partial pancreatic-duct ligation (PDL) in adult mice, we investigated whether PDL also causes alpha cells to expand and whether IL-6 signalling is involved. As alpha cells can reprogramme to beta cells in a number of beta cell (re)generation models, we examined whether this phenomenon also exists in PDL pancreas. METHODS: Total alpha cell volume, alpha cell size and total glucagon content were evaluated in equivalent portions of PDL- and sham-operated mouse pancreases. Proliferation of glucagon(+) cells was assessed by expression of the proliferation marker Ki67. Inter-conversions between alpha and beta cells were monitored in transgenic mice with conditional cell-type-specific labelling. The role of IL-6 in regulating alpha cell proliferation was evaluated by in situ delivery of an IL-6-inactivating antibody. RESULTS: In response to PDL surgery, alpha cell volume in the ligated tissue was increased threefold, glucagon content fivefold and alpha cell size by 10%. Activation of alpha cell proliferation in PDL pancreas required IL-6 signalling. A minor fraction of alpha cells derived from beta cells, whereas no evidence for alpha to beta cell conversion was obtained. CONCLUSIONS/INTERPRETATION: In PDL-injured adult mouse pancreas, new alpha cells are generated mainly by IL-6-dependent self-duplication and seldom by reprogramming of beta cells.


Assuntos
Proliferação de Células/fisiologia , Células Secretoras de Glucagon/citologia , Interleucina-6/metabolismo , Ductos Pancreáticos/citologia , Animais , Tamanho Celular , Células Secretoras de Glucagon/metabolismo , Ligadura , Camundongos , Ductos Pancreáticos/metabolismo
3.
Diabetes ; 71(5): 1023-1033, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100352

RESUMO

Epigenetic regulation is an important factor in glucose metabolism, but underlying mechanisms remain largely unknown. Here we investigated epigenetic control of systemic metabolism by bromodomain-containing proteins (Brds), which are transcriptional regulators binding to acetylated histone, in both intestinal cells and mice treated with the bromodomain inhibitor JQ-1. In vivo treatment with JQ-1 resulted in hyperglycemia and severe glucose intolerance. Whole-body or tissue-specific insulin sensitivity was not altered by JQ-1; however, JQ-1 treatment reduced insulin secretion during both in vivo glucose tolerance testing and ex vivo incubation of isolated islets. JQ-1 also inhibited expression of fibroblast growth factor (FGF) 15 in the ileum and decreased FGF receptor 4-related signaling in the liver. These adverse metabolic effects of Brd4 inhibition were fully reversed by in vivo overexpression of FGF19, with normalization of hyperglycemia. At a cellular level, we demonstrate Brd4 binds to the promoter region of FGF19 in human intestinal cells; Brd inhibition by JQ-1 reduces FGF19 promoter binding and downregulates FGF19 expression. Thus, we identify Brd4 as a novel transcriptional regulator of intestinal FGF15/19 in ileum and FGF signaling in the liver and a contributor to the gut-liver axis and systemic glucose metabolism.


Assuntos
Hiperglicemia , Proteínas Nucleares , Animais , Epigênese Genética , Fatores de Crescimento de Fibroblastos/metabolismo , Glucose , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 12(1): 6951, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845204

RESUMO

To improve the power of mediation in high-throughput studies, here we introduce High-throughput mediation analysis (Hitman), which accounts for direction of mediation and applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight management, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB caused greater improvement in HbA1c, which was mediated by growth hormone receptor (GHR). GHR's mediation is more significant than clinical mediators, including BMI. GHR decreases at 3 months postoperatively alongside increased insulin-like growth factor binding proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1) hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB may induce resistance to diabetogenic effects of GH signaling.Trial Registration: Clinicaltrials.gov NCT01073020.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Derivação Gástrica , Fígado/metabolismo , Metaboloma , Obesidade/sangue , Proteoma , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Índice de Massa Corporal , Proteínas de Transporte/sangue , Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/cirurgia , Dipeptidases/sangue , Dipeptidases/genética , Jejum/fisiologia , Regulação da Expressão Gênica , Hemoglobinas Glicadas/genética , Hemoglobinas Glicadas/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Hormônio do Crescimento Humano/sangue , Hormônio do Crescimento Humano/genética , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fígado/patologia , Obesidade/genética , Obesidade/patologia , Obesidade/cirurgia , Cultura Primária de Células , Ratos , Estudos Retrospectivos
5.
Cell Rep ; 31(3): 107524, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320669

RESUMO

Activating mutations in the canonical Wnt/ß-catenin pathway are key drivers of hyperplasia, the gateway for tumor development. In a wide range of tissues, this occurs primarily through enhanced effects on cellular proliferation. Whether additional mechanisms contribute to ß-catenin-driven hyperplasia remains unknown. The adrenal cortex is an ideal system in which to explore this question, as it undergoes hyperplasia following somatic ß-catenin gain-of-function (ßcat-GOF) mutations. Targeting ßcat-GOF to zona Glomerulosa (zG) cells leads to a progressive hyperplastic expansion in the absence of increased proliferation. Instead, we find that hyperplasia results from a functional block in the ability of zG cells to transdifferentiate into zona Fasciculata (zF) cells. Mechanistically, zG cells demonstrate an upregulation of Pde2a, an inhibitor of zF-specific cAMP/PKA signaling. Hyperplasia is further exacerbated by trophic factor stimulation leading to organomegaly. Together, these data indicate that ß-catenin drives adrenal hyperplasia through both proliferation-dependent and -independent mechanisms.


Assuntos
Hiperplasia Suprarrenal Congênita/metabolismo , Hiperplasia Suprarrenal Congênita/patologia , beta Catenina/metabolismo , Hiperplasia Suprarrenal Congênita/genética , Animais , Transdiferenciação Celular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , beta Catenina/genética
6.
J Vis Exp ; (102): e52765, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26273954

RESUMO

Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories.


Assuntos
Reprogramação Celular/fisiologia , Células Secretoras de Insulina/citologia , Pâncreas/lesões , Ductos Pancreáticos/cirurgia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Complicações Intraoperatórias/patologia , Ligadura/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pâncreas/citologia
7.
Diabetes ; 64(9): 3218-28, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26015547

RESUMO

Identifying pathways for ß-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17ß-estradiol (E2) and estrogen receptor (ER) signaling for stimulating ß-cell generation during embryonic development and in the severely injured adult pancreas. E2 concentration, ER activity, and number of ERα transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERα in ß-cells. PDL-induced proliferation of ß-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and ß-cell growth in PDL pancreas were impaired when ERα was turned off chemically or genetically (ERα(-/-)), whereas in situ delivery of E2 promoted ß-cell formation. In the embryonic pancreas, ß-cell replication, number of Ngn3(+) progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERα inactivation. The current study reveals that E2 and ERα signaling can drive ß-cell replication and formation in mouse pancreas.


Assuntos
Proliferação de Células/genética , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Secretoras de Insulina/metabolismo , Pâncreas/embriologia , Ductos Pancreáticos/lesões , RNA Mensageiro/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/citologia
8.
PLoS One ; 9(9): e107935, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268801

RESUMO

Combining immune intervention with therapies that directly influence the functional state of the ß-cells is an interesting strategy in type 1 diabetes cure. Dipeptidyl peptidase-4 (DPP-4) inhibitors elevate circulating levels of active incretins, which have been reported to enhance insulin secretion and synthesis, can support ß-cell survival and possibly stimulate ß-cell proliferation and neogenesis. In the current study, we demonstrate that the DPP-4 inhibitor MK626, which has appropriate pharmacokinetics in mice, preceded by a short-course of low-dose anti-CD3 generated durable diabetes remission in new-onset diabetic non-obese diabetic (NOD) mice. Induction of remission involved recovery of ß-cell secretory function with resolution of destructive insulitis and preservation of ß-cell volume/mass, along with repair of the islet angioarchitecture via SDF-1- and VEGF-dependent actions. Combination therapy temporarily reduced the CD4-to-CD8 distribution in spleen although not in pancreatic draining lymph nodes (PLN) and increased the proportion of effector/memory T cells as did anti-CD3 alone. In contrast, only combination therapy amplified Foxp3+ regulatory T cells in PLN and locally in pancreas. These findings open new opportunities for the treatment of new-onset type 1 diabetes by introducing DPP-4 inhibitors in human CD3-directed clinical trials.


Assuntos
Anticorpos Monoclonais/farmacologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Baço/efeitos dos fármacos , Animais , Complexo CD3/genética , Complexo CD3/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Cricetinae , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos NOD , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pâncreas/patologia , Indução de Remissão , Baço/imunologia , Baço/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
9.
Int J Mol Med ; 25(5): 751-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20372819

RESUMO

Pinus massoniana bark extract (PMBE) is a mixture of flavonoids, whose antioxidant and apoptosis-inducing properties have been confirmed in vitro. In this study, the apoptotic effect and mechanism of PMBE in HepG2 human hepatoma cells were evaluated. PMBE exerted dose- and time-dependent cell growth inhibition on HepG2 cells, and selectively induced apoptosis without impact on normal liver L-02 cells. Apoptosis induced by PMBE in HepG2 cells was also confirmed by annexin-V/PI staining, transmission electron microscopy and sub-G1 phase accumulation. Moreover, PMBE also slightly blocked the cell cycle in the G2/M and S phases in HepG2 cells. The investigation of the mechanism by which PMBE induced apoptosis in HepG2 cells indicated that activation of extrinsic and intrinsic caspase, inhibition of NF-kappaB activation and decrease of the antiapoptotic protein Bcl-2 and the intact Bid protein were involved. Furthermore, the antitumor activity of PBME was demonstrated in vivo by a 42.88-69.94% reduction rate of tumor weight in H22 tumor-implanted mice. Taken together, these data indicate that PMBE selectively induces apoptosis in HepG2 cells through caspase-dependent pathways, and inhibits tumor growth in vivo, making it a potential candidate for anticancer therapeutics.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular , Caspases/metabolismo , Neoplasias Hepáticas , Fitoterapia , Pinus , Casca de Planta/química , Extratos Vegetais , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Medicina Tradicional Chinesa , Camundongos , Transplante de Neoplasias , Pinus/anatomia & histologia , Pinus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA