Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(40): e2410628121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39316049

RESUMO

One of the most critical axes for cell fate determination is how cells respond to excessive reactive oxygen species (ROS)-oxidative stress. Extensive lipid peroxidation commits cells to death via a distinct cell death paradigm termed ferroptosis. However, the molecular mechanism regulating cellular fates to distinct ROS remains incompletely understood. Through siRNA against human receptor-interacting protein kinase (RIPK) family members, we found that RIPK4 is crucial for oxidative stress and ferroptotic death. Upon ROS induction, RIPK4 is rapidly activated, and the kinase activity of RIPK4 is indispensable to induce cell death. Specific ablation of RIPK4 in kidney proximal tubules protects mice from acute kidney injury induced by cisplatin and renal ischemia/reperfusion. RNA sequencing revealed the dramatically decreased expression of acyl-CoA synthetase medium-chain (ACSM) family members induced by cisplatin treatment which is compromised in RIPK4-deficient mice. Among these ACSM family members, suppression of ACSM1 strongly augments oxidative stress and ferroptotic cell death with induced expression of ACS long-chain family member 4, an important component for ferroptosis execution. Our lipidome analysis revealed that overexpression of ACSM1 leads to the accumulation of monounsaturated fatty acids, attenuation of polyunsaturated fatty acid (PUFAs) production, and thereby cellular resistance to ferroptosis. Hence, knockdown of ACSM1 resensitizes RIPK4 KO cells to oxidative stress and ferroptotic death. In conclusion, RIPK4 is a key player involved in oxidative stress and ferroptotic death, which is potentially important for a broad spectrum of human pathologies. The link between the RIPK4-ASCM1 axis to PUFAs and ferroptosis reveals a unique mechanism to oxidative stress-induced necrosis and ferroptosis.


Assuntos
Coenzima A Ligases , Ferroptose , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Ferroptose/genética , Camundongos , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cisplatino/farmacologia , Regulação para Baixo , Camundongos Knockout , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Morte Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
2.
J Biol Chem ; 291(44): 22861-22867, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27660392

RESUMO

The discovery that oxidized vitamin C, dehydroascorbate (DHA), can induce oxidative stress and cell death in cancer cells has rekindled interest in the use of high dose vitamin C (VC) as a cancer therapy. However, high dose VC has shown limited efficacy in clinical trials, possibly due to the decreased bioavailability of oral VC. Because human erythrocytes express high levels of Glut1, take up DHA, and reduce it to VC, we tested how erythrocytes might impact high dose VC therapies. Cancer cells are protected from VC-mediated cell death when co-cultured with physiologically relevant numbers of erythrocytes. Pharmacological doses of VC induce oxidative stress, GSH depletion, and increased glucose flux through the oxidative pentose phosphate pathway (PPP) in erythrocytes. Incubation of erythrocytes with VC induced hemolysis, which was exacerbated in erythrocytes from glucose-6-phosphate dehydrogenase (G6PD) patients and rescued by antioxidants. Thus, erythrocytes protect cancer cells from VC-induced oxidative stress and undergo hemolysis in vitro, despite activation of the PPP. These results have implications on the use of high dose VC in ongoing clinical trials and highlight the importance of the PPP in the response to oxidative stress.


Assuntos
Ácido Ascórbico/efeitos adversos , Eritrócitos/citologia , Glutationa/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Via de Pentose Fosfato , Ácido Ascórbico/metabolismo , Linhagem Celular Tumoral , Ácido Desidroascórbico/efeitos adversos , Ácido Desidroascórbico/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
3.
J Am Acad Dermatol ; 76(5): 932-940.e3, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28040372

RESUMO

BACKGROUND: Human polyomavirus (HPyV)6 and HPyV7 are shed chronically from human skin. HPyV7, but not HPyV6, has been linked to a pruritic skin eruption of immunosuppression. OBJECTIVE: We determined whether biopsy specimens showing a characteristic pattern of dyskeratosis and parakeratosis might be associated with polyomavirus infection. METHODS: We screened biopsy specimens showing "peacock plumage" histology by polymerase chain reaction for HPyVs. Cases positive for HPyV6 or HPyV7 were then analyzed by immunohistochemistry, electron microscopy, immunofluorescence, quantitative polymerase chain reaction, and complete sequencing, including unbiased, next-generation sequencing. RESULTS: We identified 3 additional cases of HPyV6 or HPyV7 skin infections. Expression of T antigen and viral capsid was abundant in lesional skin. Dual immunofluorescence staining experiments confirmed that HPyV7 primarily infects keratinocytes. High viral loads in lesional skin compared with normal-appearing skin and the identification of intact virions by both electron microscopy and next-generation sequencing support a role for active viral infections in these skin diseases. LIMITATION: This was a small case series of archived materials. CONCLUSION: We have found that HPyV6 and HPyV7 are associated with rare, pruritic skin eruptions with a distinctive histologic pattern and describe this entity as "HPyV6- and HPyV7-associated pruritic and dyskeratotic dermatoses."


Assuntos
Ceratose/patologia , Ceratose/virologia , Infecções por Polyomavirus/complicações , Polyomavirus/isolamento & purificação , Prurido/patologia , Prurido/virologia , Adulto , Antígenos Virais de Tumores/análise , Biópsia , Proteínas do Capsídeo/análise , Estudos de Casos e Controles , Feminino , Humanos , Queratinócitos/virologia , Masculino , Pessoa de Meia-Idade , Polyomavirus/genética , Polyomavirus/imunologia , Infecções por Polyomavirus/virologia , Estudos Retrospectivos , Pele/patologia , Pele/virologia , Carga Viral
4.
Appl Microbiol Biotechnol ; 97(3): 1141-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22419217

RESUMO

Previously, we studied an AAVS1 site-specific non-viral integration system with a Rep-donor plasmid and a plasmid containing adeno-associated virus integration element. Our earlier study focused on the plasmid vector itself, but the cellular response to the system was still unknown. SP100 is a member of the promyelocytic leukemia nuclear bodies. It is involved in many cellular processes such as transcriptional regulation and the cellular intrinsic immune response against viral infection. In this study, we revealed that SP100 inhibited the Rep-dependent nonviral integration. Conversely, transient expression of Rep78 increased the degradation of SP100. This degradation was inhibited by treatment with MG132, an inhibitor of the ubiquitin proteasome. SP100 and Rep78 are both located in the nucleolus, which provides the spatial possibility for their interaction. Rep78 was coimmunoprecipitated with the enhanced green fluorescent protein (EGFP)-SP100 fusion protein but not EGFP, which verified the interaction between Rep78 and SP100. These results have enriched our knowledge about the cellular protein SP100 and Rep-dependent nonviral integration. It may lead to an improvement in the application of Rep-related transgene integration method and in the selection of target cells.


Assuntos
Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Dependovirus/fisiologia , Integração Viral , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Humanos , Plasmídeos , Ligação Proteica , Proteínas Virais/metabolismo
5.
Cell Death Differ ; 29(9): 1705-1718, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260822

RESUMO

Hepatic ischemia followed by reperfusion (I/R), a major clinical problem during liver surgical procedures, can induce liver injury with severe cell death including ferroptosis which is characterized by iron-dependent accumulation of lipid peroxidation. The HECT domain-containing ubiquitin E3 ligase HUWE1 (also known as MULE) was initially shown to promote apoptosis. However, our preliminary study demonstrates that high expression of HUWE1 in the liver donors corelates with less injury and better hepatic function after liver transplantation in patients. Thus, we investigate the role of HUWE1 in acute liver injury, and identify HUWE1 as a negative ferroptosis modulator through transferrin receptor 1(TfR1). Deficiency of Huwe1 in mice hepatocytes (HKO) exacerbated I/R and CCl4-induced liver injury with more ferroptosis occurrence. Moreover, Suppression of Huwe1 remarkably enhances cellular sensitivity to ferroptosis in primary hepatocytes and mouse embryonic fibroblasts. Mechanistically, HUWE1 specifically targets TfR1 for ubiquitination and proteasomal degradation, thereby regulates iron metabolism. Importantly, chemical and genetic inhibition of TfR1 dramatically diminishes the ferroptotic cell death in Huwe1 KO cells and Huwe1 HKO mice. Therefore, HUWE1 is a potential protective factor to antagonize both aberrant iron accumulation and ferroptosis thereby mitigating acute liver injury. These findings may provide clinical implications for patients with the high-expression Huwe1 alleles.


Assuntos
Ferroptose , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Equidae/metabolismo , Fibroblastos/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores da Transferrina/genética , Ubiquitina-Proteína Ligases/genética
6.
J Mol Biol ; 358(1): 38-45, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16516232

RESUMO

Adeno-associated virus (AAV) is a non-pathogenic virus and the only known eukaryotic virus capable of targeting human chromosome 19 for integration at a well-characterized AAVS1 site. Its site-specific integration is mediated by Rep68 and Rep78, viral proteins that bind to both the viral genome and AAVS1 site on ch19 through a specific Rep-binding element (RBE) located in both the viral genome and AAVS1. There are three RBEs in the AAV genome: two identical ones in both inverted terminal repeats (ITR) and another one in a recently discovered region termed the P5 integration efficiency element (P5IEE) that encompasses the viral P5 promoter. In order to identify the viral cis-acting sequence essential for Rep-mediated integration, we tested a series of constructs containing various lengths of P5IEE and compared the two RBEs from ITR (RBE(itr)) and P5IEE (RBE(p5)) in terms of their efficiency in Rep-dependent integration. Methods employed included a colony-forming assay, a PCR-based assay and Southern blotting analysis. We found that 16bp of the RBE cis-element was sufficient for mediating Rep-dependent site-specific integration. Furthermore, RBE(itr) was both more effective and specific than the RBE(p5) in Rep-dependent integration at the AAVS1 site. These findings added new information on the mechanism of Rep-dependent AAV genome insertion at the AAVS1 site and may be helpful in developing new high efficiency vectors for site-specific transgene integration.


Assuntos
Cromossomos Humanos Par 19/genética , Proteínas de Ligação a DNA/metabolismo , DNA/genética , Dependovirus/genética , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Virais/metabolismo , Integração Viral/genética , Pareamento de Bases/genética , Sequência de Bases , Células Cultivadas , DNA/metabolismo , Dependovirus/fisiologia , Humanos , Dados de Sequência Molecular , Plasmídeos/genética , Alinhamento de Sequência , Deleção de Sequência/genética
7.
J Clin Invest ; 127(3): 982-986, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28192371

RESUMO

Germline coding mutations in different telomere-related genes have been linked to autosomal-dominant familial pulmonary fibrosis. Individuals with these inherited mutations demonstrate incomplete penetrance of clinical phenotypes affecting the lung, blood, liver, skin, and other organs. Here, we describe the somatic acquisition of promoter mutations in telomerase reverse transcriptase (TERT) in blood leukocytes of approximately 5% of individuals with inherited loss-of-function coding mutations in TERT or poly(A)-specific ribonuclease (PARN), another gene linked to telomerase function. While these promoter mutations were initially identified as oncogenic drivers of cancer, individuals expressing the mutations have no history of cancer. Neither promoter mutation was found in population-based cohorts of similar or advanced age. The TERT promoter mutations were found more frequently in cis with the WT allele than the TERT coding sequence mutation. EBV-transformed lymphoblastoid B cell lines (LCLs) derived from subjects with TERT promoter mutations showed increased telomerase expression and activity compared with cell lines from family members with identical coding mutations. TERT promoter mutations resulted in an increased proliferation of LCLs and demonstrated positive selection over time. The persistence and recurrence of noncoding gain-of-function mutations in these cases suggests that telomerase activation is not only safely tolerated but also advantageous for clonal expansion.


Assuntos
Alelos , Linfócitos B/metabolismo , Seleção Clonal Mediada por Antígeno/genética , Mutação , Regiões Promotoras Genéticas , Telomerase , Linhagem Celular Transformada , Proliferação de Células/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Feminino , Humanos , Masculino , Telomerase/genética , Telomerase/metabolismo
8.
Oncotarget ; 7(38): 61874-61889, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27542204

RESUMO

NUCKS1 is a 27 kD vertebrate-specific protein, with a role in the DNA damage response. Here, we show that after 4 Gy total-body X-irradiation, Trp53+/- Nucks1+/- mice more rapidly developed tumors, particularly thymic lymphoma (TL), than Trp53+/- mice. TLs in both cohorts showed loss of heterozygosity (LOH) of the Trp53+ allele in essentially all cases. In contrast, LOH of the Nucks1+ allele was rare. Nucks1 expression correlated well with Nucks1 gene dosage in normal thymi, but was increased in the majority of TLs from Trp53+/- Nucks1+/- mice, suggesting that elevated Nucks1 message may be associated with progression towards malignancy in vivo. Trp53+/- Nucks1+/- mice frequently succumbed to CD4- CD8- TLs harboring translocations involving Igh but not Tcra/d, indicating TLs in Trp53+/- Nucks1+/- mice mostly originated prior to the double positive stage and at earlier lineage than TLs in Trp53+/- mice. Monoclonal rearrangements at Tcrb were more prevalent in TLs from Trp53+/- Nucks1+/- mice, as was infiltration of primary TL cells to distant organs (liver, kidney and spleen). We propose that, in the context of Trp53 deficiency, wild type levels of Nucks1 are required to suppress radiation-induced TL, likely through the role of the NUCKS1 protein in the DNA damage response.


Assuntos
Linfoma/genética , Neoplasias Induzidas por Radiação/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Alelos , Animais , Anticorpos Monoclonais/química , Hibridização Genômica Comparativa , Dano ao DNA , Feminino , Dosagem de Genes , Genótipo , Haploinsuficiência , Imunofenotipagem , Rim/metabolismo , Fígado/metabolismo , Perda de Heterozigosidade , Linfoma/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Induzidas por Radiação/metabolismo , Baço/metabolismo , Regulação para Cima
9.
Hum Gene Ther ; 21(6): 728-38, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20070175

RESUMO

The adeno-associated virus (AAV) p5 promoter controls expression of Rep68 and Rep78, which are responsible for specific integration of the viral genome into the AAVS1 site of the human genome. The p5 promoter contains a Rep-binding element (RBE) sequence that acts as a substrate of the Rep proteins for both site-specific integration of p5 itself and transcriptional suppression of the p5 promoter. To differentiate these two Rep-mediated functions, we dissected the p5 core structure TATA/RBE/YY1+1 through a series of mutations. Mutations in the TATA box or YY1+1 region of p5IEE significantly reduced Rep-mediated site-specific integration (RMSSI) and p5 promoter transcriptional activity, but only the TATA box is involved in Rep-mediated transcriptional suppression (RMTS). Point mutations at nucleotides 266, 267, 268, 270, and 273 of the GAGTGAGC motif in p5 RBE significantly reduced RMSSI efficiency. However, only p5G270T lost the affinity of Rep binding and had significant reduction of RMTS. It appears that RMTS is determined by the affinity of p5RBE for Rep whereas RMSSI requires more stringent conditions. Thus, RMTS and RMSSI can be differentiated by point mutations in the p5 promoter, which is useful in gene therapy in a helper vector to drive Rep expression, as the mutant promoters seldom integrate themselves but remain the RMTS feature for reduced cytotoxicity caused by a high level of Rep protein.


Assuntos
Sequências Reguladoras de Ácido Nucleico/genética , Sequência de Bases , Dependovirus/genética , Dependovirus/metabolismo , Expressão Gênica , Genoma Viral , Humanos , Ligação Proteica/genética , TATA Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA