Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Struct Funct ; 42(2): 131-140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855440

RESUMO

Actin, a major component of microfilaments, is involved in various eukaryotic cellular functions. Over the past two decades, actin fused with fluorescent protein has been used as a probe to detect the organization and dynamics of the actin cytoskeleton in living eukaryotic cells. It is generally assumed that the expression of fusion protein of fluorescent protein does not disturb the distribution of endogenous actin throughout the cell, and that the distribution of the fusion protein reflects that of endogenous actin. However, we noticed that EGFP-ß-actin caused the excessive formation of microfilaments in several mammalian cell lines. To investigate whether the position of the EGFP tag on actin affected the formation of filaments, we constructed an expression vector harboring a ß-actin-EGFP gene. In contrast to EGFP-ß-actin, cells expressing ß-actin-EGFP showed actin filaments in a high background from the monomer actin in cytosol. Additionally, the detergent insoluble assay revealed that the majority of the detergent-insoluble cytoskeleton from cells expressing EGFP-ß-actin was recovered in the pellet. Furthermore, we found that the expression of EGFP-ß-actin affects the migration of NBT-L2b cells and the mechanical stiffness of U2OS cells. These results indicate that EGFP fused to the N-terminus of actin tend to form excessive actin filaments. In addition, EGFP-actin affects both the cellular morphological and physiological phenotypes as compared to actin-EGFP.Key words: actin, GFP, cytoskeleton and probe.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Citoesqueleto de Actina/química , Actinas/análise , Actinas/química , Animais , Linhagem Celular , Citosol/química , Citosol/metabolismo , Proteínas de Fluorescência Verde/análise , Humanos , Mamíferos
2.
PLoS One ; 14(4): e0214736, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30946777

RESUMO

Although the distinct distribution of certain molecules along the anterior or posterior edge is essential for directed cell migration, the mechanisms to maintain asymmetric protein localization have not yet been fully elucidated. Here, we studied a mechanism for the distinct localizations of two Dictyostelium talin homologues, talin A and talin B, both of which play important roles in cell migration and adhesion. Using GFP fusion, we found that talin B, as well as its C-terminal actin-binding region, which consists of an I/LWEQ domain and a villin headpiece domain, was restricted to the leading edge of migrating cells. This is in sharp contrast to talin A and its C-terminal actin-binding domain, which co-localized with myosin II along the cell posterior cortex, as reported previously. Intriguingly, even in myosin II-null cells, talin A and its actin-binding domain displayed a specific distribution, co-localizing with stretched actin filaments. In contrast, talin B was excluded from regions rich in stretched actin filaments, although a certain amount of its actin-binding region alone was present in those areas. When cells were sucked by a micro-pipette, talin B was not detected in the retracting aspirated lobe where acto-myosin, talin A, and the actin-binding regions of talin A and talin B accumulated. Based on these results, we suggest that talin A predominantly interacts with actin filaments stretched by myosin II through its C-terminal actin-binding region, while the actin-binding region of talin B does not make such distinctions. Furthermore, talin B appears to have an additional, unidentified mechanism that excludes it from the region rich in stretched actin filaments. We propose that these actin-binding properties play important roles in the anterior and posterior enrichment of talin B and talin A, respectively, during directed cell migration.


Assuntos
Movimento Celular , Dictyostelium/metabolismo , Proteínas de Protozoários/análise , Talina/análise , Citoesqueleto de Actina/metabolismo , Sítios de Ligação , Metabolismo dos Lipídeos , Lipídeos/química , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia , Talina/química , Talina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA