Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 8(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011866

RESUMO

In recent years, supercapacitors are attracting great attention as one kind of electrochemical energy storage device, which have a high power density, a high energy density, fast charging and discharging, and a long cycle life. As a solution processing method, printing technology is widely used to fabricate supercapacitors. Printable nanomaterials are critical to the fabrication of high-performance supercapacitors by printing technology. In this work, the advantages of printing technology are summarized. Moreover, various nanomaterials used to fabricate supercapacitors by printing technology are presented. Finally, the remaining challenges and broad research as well as application prospects in printing high-performance supercapacitors with nanomaterials are proposed.

2.
Polymers (Basel) ; 10(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30961134

RESUMO

Microstructures are playing an important role in manufacturing functional devices, due to their unique properties, such as wettability or flexibility. Recently, various microstructured surfaces have been fabricated to realize functional applications. To achieve the applications, photolithography or printing technology is utilized to produce the microstructures. However, these methods require preparing templates or masks, which are usually complex and expensive. Herein, a facile approach for fabricating microstructured surfaces was studied based on etched template by inkjet printing technology. Precured polydimethylsiloxane substrate was etched by inkjet printing water-soluble polyacrylic acid solution. Then, the polydimethylsiloxane substrate was cured and rinsed, which could be directly used as template for fabricating microstructured surfaces. Surfaces with raised dots, lines, and squares, were facilely obtained using the etched templates by inkjet printing technology. Furthermore, controllable anisotropic wettability was exhibited on the raised line microstructured surface. This work provides a flexible and scalable way to fabricate various microstructured surfaces. It would bring about excellent performance, which could find numerous applications in optoelectronic devices, biological chips, microreactors, wearable products, and related fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA