Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 43(6): 870-883, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35968908

RESUMO

Plant-based pretreatment biorefining is the initial triggering process in biomass-conversion to bio-based chemical products. In view of chemical sustainability, the raw plant-based pretreatment biorefining process is more favorable than the fossil-based one. Its direct use contributes to reducing CO2 emissions and the production cost of the target products by eliminating costly steps, such as the separation and purification of intermediates. Three types of feedstock plant resources have been utilized as raw plant feedstock sources, such as: lignocellulosic, starchy, and inulin-rich feedstock plants. These plant sources can be directly used for bio-based chemical products. To enhance the efficiency of their pretreatment biorefining process, well-designed biomodification schemes are discussed in this review to afford important information on useful biomodification approaches. For lignocellulosic feedstock plants, the enzymes and regulatory elements involved in lignin reduction are discussed using: COMT, GAUT4, CSE, PvMYB4 repressor, etc. For inulin-rich feedstock plants, 1-SST, 1-FFT, 1-FEH, and endoinulinase are illustrated in relation with the reduction of chain length of inulin polymer. For starchy feedstock plants, their biomodification is targeted to enhancing the depolymerization efficiency of starch to glucose monomer units. For this biomodification target, six candidates are discussed. These are SBE I, SBE IIa, SBE IIb, GBSS I, PTSTI, GWD 1, and PTSTI. The biomodification strategies discussed here promise to be conducive to enhancing the efficiency of the plant-based pretreatment biorefining process.


Assuntos
Biocombustíveis , Inulina , Plantas , Lignina , Amido , Biomassa
2.
Plant J ; 103(3): 1205-1214, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32365248

RESUMO

LIKE HETEROCHROMATIN PROTEIN1 (LHP1) encodes the only plant homologue of the metazoan HETEROCHROMATIN PROTEIN1 (HP1) protein family. The LHP1 protein is necessary for proper epigenetic regulation of a range of developmental processes in plants. LHP1 is a transcriptional repressor of flowering-related genes, such as FLOWERING LOCUS T (FT), FLOWERING LOCUS C (FLC), AGAMOUS (AG) and APETALA 3 (AP3). We found that LHP1 interacts with importin α-1 (IMPα-1), importin α-2 (IMPα-2) and importin α-3 (IMPα-3) both in vitro and in vivo. A genetic approach revealed that triple mutation of impα-1, impα-2 and impα-3 resulted in Arabidopsis plants with a rapid flowering phenotype similar to that of plants with mutations in lhp1 due to the upregulation of FT expression. Nuclear targeting of LHP1 was severely impaired in the impα triple mutant, resulting in the de-repression of LHP1 target genes AG, AP3 and SHATTERPROOF 1 as well as FT. Therefore, the importin proteins IMPα-1, -2 and -3 are necessary for the nuclear import of LHP1.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Carioferinas/metabolismo , Fatores de Transcrição/metabolismo , alfa Carioferinas/metabolismo , Arabidopsis/metabolismo , Fotoperíodo
3.
Front Plant Sci ; 14: 1133518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077633

RESUMO

Environmental cues regulate the transition of many plants from vegetative to flowering development. Day length, or photoperiod, is one cue that synchronizes flowering by changing seasons. Consequently, the molecular mechanism of flowering control is prominent in Arabidopsis and rice, where essential genes like FLOWERING LOCUS T (FT) homolog, HEADING DATE 3a (Hd3a), have been connected to flowering regulation. Perilla is a nutrient-rich leaf vegetable, and the flowering mechanism remains largely elusive. We identified flowering-related genes under short-day conditions using RNA sequencing to develop an enhanced leaf production trait using the flowering mechanism in the perilla. Initially, an Hd3a-like gene was cloned from the perilla and defined as PfHd3a. Furthermore, PfHd3a is highly rhythmically expressed in mature leaves under short-day and long-day conditions. Ectopic expression of PfHd3a in Atft-1 mutant plants has been shown to complement Arabidopsis FT function, resulting in early flowering. In addition, our genetic approaches revealed that overexpression of PfHd3a in perilla caused early flowering. In contrast, the CRISPR/Cas9 generated PfHd3a-mutant perilla showed significantly late flowering, resulting in approximately 50% leaf production enhancement compared to the control. Our results suggest that PfHd3a plays a vital role in regulating flowering in the perilla and is a potential target for molecular breeding in the perilla.

4.
J Plant Physiol ; 171(17): 1601-8, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25151129

RESUMO

Several GTPases are required for ribosome biogenesis and assembly. We recently identified rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), a YlqF/YawG family GTPase, as having a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating OsNug2 function, yeast two-hybrid screens were performed using OsNug2 as bait. Rice serine/threonine kinase 1 (OsSTK1) was identified as a candidate interacting protein. OsSTK1 appeared to interact with OsNug2 both in vitro and in vivo. OsSTK1 was found to have no effect on the GTP-binding activity of OsNug2; however, the presence of recombinant OsSTK1 in OsNug2 assay reaction mixtures increased OsNug2 GTPase activity. A kinase assay showed that OsSTK1 had weak autophosphorylation activity and strongly phosphorylated serine 209 of OsNug2. Using yeast complementation testing, we identified a GAL::OsNug2(S209N) mutation-harboring yeast strain that exhibited a growth-defective phenotype on galactose medium at 39°C, which was divergent from that of a yeast strain harboring GAL::OsNug2. The intrinsic GTPase activity of OsNug2(S209N), which was found to be similar to that of OsNug2, was not fully enhanced upon weak binding of OsSTK1. Our findings indicate that OsSTK1 functions as a positive regulator of OsNug2 by enhancing OsNug2 GTPase activity. In addition, phosphorylation of OsNug2 serine 209 is essential for its complete function in biological functional pathway.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Oryza/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Expressão Gênica , Genes Reporter , Teste de Complementação Genética , Mutação , Oryza/genética , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA