Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(32): 19190-19200, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723828

RESUMO

The 26S proteasome, a self-compartmentalized protease complex, plays a crucial role in protein quality control. Multiple levels of regulatory systems modulate proteasomal activity for substrate hydrolysis. However, the destruction mechanism of mammalian proteasomes is poorly understood. We found that inhibited proteasomes are sequestered into the insoluble aggresome via HDAC6- and dynein-mediated transport. These proteasomes colocalized with the autophagic receptor SQSTM1 and cleared through selective macroautophagy, linking aggresomal segregation to autophagic degradation. This proteaphagic pathway was counterbalanced with the recovery of proteasomal activity and was critical for reducing cellular proteasomal stress. Changes in associated proteins and polyubiquitylation on inhibited 26S proteasomes participated in the targeting mechanism to the aggresome and autophagosome. The STUB1 E3 Ub ligase specifically ubiquitylated purified human proteasomes in vitro, mainly via Lys63-linked chains. Genetic and chemical inhibition of STUB1 activity significantly impaired proteasome processing and reduced resistance to proteasomal stress. These data demonstrate that aggresomal sequestration is the crucial upstream event for proteasome quality control and overall protein homeostasis in mammals.


Assuntos
Macroautofagia , Organelas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Humanos , Organelas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
2.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38069401

RESUMO

The ClC-K channels CLCNKA and CLCNKB are crucial for the transepithelial transport processes required for sufficient urinary concentrations and sensory mechanoelectrical transduction in the cochlea. Loss-of-function alleles in these channels are associated with various clinical phenotypes, ranging from hypokalemic alkalosis to sensorineural hearing loss (SNHL) accompanied by severe renal conditions, i.e., Bartter's syndrome. Using a stepwise genetic approach encompassing whole-genome sequencing (WGS), we identified one family with compound heterozygous variants in the ClC-K channels, specifically a truncating variant in CLCNKA in trans with a contiguous deletion of CLCNKA and CLCNKB. Breakpoint PCR and Sanger sequencing elucidated the breakpoint junctions derived from WGS, and allele-specific droplet digital PCR confirmed one copy loss of the CLCNKA_CLCNKB contiguous deletion. The proband that harbors the CLCNKA_CLCNKB variants is characterized by SNHL without hypokalemic alkalosis and renal anomalies, suggesting a distinct phenotype in the ClC-K channels in whom SNHL predominantly occurs. These results expanded genotypes and phenotypes associated with ClC-K channels, including the disease entities associated with non-syndromic hearing loss. Repeated identification of deletions across various extents of CLCNKA_CLCNKB suggests a mutational hotspot allele, highlighting the need for an in-depth analysis of the CLCNKA_CLCNKB intergenic region, especially in undiagnosed SNHL patients with a single hit in CLCNKA.


Assuntos
Alcalose , Síndrome de Bartter , Surdez , Perda Auditiva Neurossensorial , Humanos , Síndrome de Bartter/genética , Canais de Cloreto/genética , Estudos de Associação Genética , Genótipo , Perda Auditiva Neurossensorial/genética , Mutação
3.
J Toxicol Environ Health A ; 84(2): 67-83, 2021 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-33106114

RESUMO

Pediatric physiologically based pharmacokinetic (PBPK) models facilitate the prediction of PK parameters in children under specific exposure conditions. Pharmacokinetic outcomes are highly sensitive to fraction unbound in plasma (fup) as incorporated into PBPK models. Rarely is fup in children (fupchild) experimentally derived and prediction is based upon fup in adults (fupadult) as well as a ratio of plasma protein concentrations between children and adults. The objectives were to (i) evaluate protein concentration vs. age profile derived from ontogeny models, (ii) assess predictive performances of fup ontogeny models, and (iii) determine overall uncertainty in fupchild prediction resulting from a combination of quantitative structure-property relationship (QSPR) model and ontogeny models. The plasma albumin and alpha-acid glycoprotein (AAG) concentration data for pediatrics and fupchild and fupadult data were obtained from literature. The protein concentration vs. age profile derived from ontogeny models were compared to observed levels. Fupchild values were calculated according to ontogeny models using both observed and QSPR-predicted fupadult as inputs and predictive performances of ontogeny models assessed by comparing predicted fupchild to observed values. Protein concentrations vs. age profiles derived from non-linear equations were more congruent with observed albumin levels than linear or step-wise models. When observed fupadult values were used as input, the fupchild data were under-predicted with average fold error (AFE) amounts ranging 0.79-0.81 and 0.77-0.97 for albumin and AAG ontogeny models, respectively. When QSPR-predicted fupadult values were used as input, AFE of fupchild ranged 1.2-1.35 and 0.98-1.2 for albumin and AAG models, respectively. The choice of ontogeny model with respect to prediction accuracy is more important for AAG, highly bound compounds and infants. For these compounds and scenarios, experimental determination of fupchild for inclusion into a pediatric PBPK model is necessary to have confidence in PBPK model outputs.


Assuntos
Proteínas Sanguíneas/análise , Modelos Biológicos , Farmacocinética , Plasma/química , Medição de Risco , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
4.
J Nat Prod ; 82(2): 341-348, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30735389

RESUMO

Five new tripeptides, acidiphilamides A-E (1-5), were discovered along with two previously reported compounds, l-isoleucinamide (6) and l-valinamide (7), from Streptacidiphilus rugosus AM-16, an acidophilic actinobacterial strain isolated from acidic forest soil. The structures of 1-5 were elucidated as modified tripeptides bearing phenylalaninol or methioninol fragments with C3-C5 acyl chains based mainly on NMR and mass spectroscopic data. The absolute configurations of the amine units were established by advanced Marfey's method and GITC (2,3,4,6-tetra- O-acetyl-ß-d-glucopyranosyl isothiocyanate) derivatization followed by LC/MS analysis. Acidiphilamides A and B (1 and 2), the first secondary metabolites isolated from the rare actinobacterial genus Streptacidiphilus, significantly inhibited autophagic flux but not proteasome activity in HeLa cells. These compounds appeared to block mainly the autophagosome-lysosome fusion step in the late stage of cellular autophagy.


Assuntos
Actinobacteria/metabolismo , Autofagia/efeitos dos fármacos , Oligopeptídeos/isolamento & purificação , Células HeLa , Humanos , Oligopeptídeos/química , Oligopeptídeos/farmacologia
5.
J Toxicol Environ Health A ; 82(14): 789-814, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31405354

RESUMO

Pediatric physiologically based pharmacokinetic (PBPK) models facilitate the estimation of pharmacokinetic (PK) parameters in children under specific exposure conditions. In human health risk assessment, PBPK modeling has been used to determine a chemical-specific human kinetic adjustment factor (HKAF). Due to increased demands in regulatory assessment, model evaluation and qualification have gained growing attention. The aim of this study was to undertake model qualification of pediatric PBPK models for compounds that are primarily metabolized by cytochrome P450 (CYP) enzymes. The objectives were to determine the appropriateness of the virtual individual creating algorithm in PK-Sim® in predicting PK parameters and their variability in children and identify critical system-specific inputs. PBPK models in adults were constructed for several pharmaceuticals (grouped by major clearance process such as CYP3A4). Several age groups of virtual individuals were created to represent children in pediatric clinical studies. The mean and variance of clearance (CL) from virtual populations were compared to observed values. Sensitivity analysis on area under the curve (AUC) was performed. System-specific parameters of virtual children that contribute to inter-individual PK properties were assessed. Eighty-one percent of the comparisons between simulated and observed clearance values were within twofold error. The mean fold errors were 1.1, 1, 0.7 and 1.8 in adolescents, children, infants and neonates, respectively. CL variability was reasonably predicted for 70% of the comparisons with comparable coefficients of variation between observed and predicted. The sensitivity analysis revealed that fraction unbound in plasma, parameters related to CYP enzyme-mediated metabolism and liver volumewere most important in the estimation of pediatric exposure. A comparison of variabilities in weight, height and liver volume in virtual children showed reliable agreement with observed data. The presented results of predictive performance and properties of virtual populations provide confidence in the use of PK-Sim for pediatric PBPK modeling in toxicological applications including PBPK-based-HKAF derivation.


Assuntos
Simulação por Computador , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Farmacocinética , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
6.
Cell Physiol Biochem ; 47(1): 67-82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29763934

RESUMO

BACKGROUND/AIMS: The 26S proteasome is the key proteolytic complex for recognition and degradation of polyubiquitinated target substrates in eukaryotes. Among numerous proteasome-associated proteins, a deubiquitinating enzyme (DUB) USP14 has been identified as an endogenous inhibitor of the proteasome. Here, we explored the complex regulatory functions of USP14 that involve ubiquitin (Ub) homeostasis and substrate degradation in flies and mammals. METHODS: USP14-null primary and immortalized mouse embryonic fibroblasts (MEFs) and USP14 knocked-down Drosophila were analyzed in this study. We measured proteasome and DUB activities using fluorogenic reporter substrates and adduct-forming probes. To examine the levels of ubiquitin, we performed immunoblotting and immunohistochemistry. Mass spectrometry (MS) was used to examine polyUb chain linkages and USP14-interacing proteins. Cell cycle was analyzed by flow cytometry, BrdU labeling, and phospho-histone H3 staining. RESULTS: The homeostasis of Ub in USP14-/-MEFs was markedly perturbed because of facilitated clearance of Ub. This phenomenon was recapitulated in muscles of USP14-deficient Drosophila with old ages. Absolute quantitation using MS also revealed that USP14-/- MEFs contained significantly increased amounts of Ub, compared with wild-type. The key phenotype of USP14-/- MEFs was their delayed proliferation originated from prolonged interphase possibly through aberrant degradation of cyclins A and B1. We found that knocking down USP14 in Drosophila resulted in delayed eye development associated with reduced mitotic activity. CONCLUSION: Our study identifies novel cellular functions of USP14 not only in cellular Ub hometostasis but also in cell cycle progression. USP14 was also essential for proper Drosophila eye development. These results strongly suggest that the USP14-mediated proteasome activity regulation may be directly related to various human diseases including cancer.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fibroblastos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Células Cultivadas , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Fibroblastos/citologia , Técnicas de Silenciamento de Genes , Homeostase , Camundongos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação
7.
Biochim Biophys Acta ; 1849(8): 1081-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26149774

RESUMO

Skeletal muscle cell differentiation requires a family of proteins called myogenic regulatory factors (MRFs) to which MyoD belongs. The activity of MyoD is under epigenetic regulation, however, the molecular mechanism by which histone KMTs and KDMs regulate MyoD transcriptional activity through methylation remains to be determined. Here we provide evidence for a unique regulatory mechanism of MyoD transcriptional activity through demethylation by Jmjd2C demethylase whose level increases during muscle differentiation. G9a decreases MyoD stability via methylation-dependent MyoD ubiquitination. Jmjd2C directly associates with MyoD in vitro and in vivo to demethylate and stabilize MyoD. The hypo-methylated MyoD due to Jmjd2C is significantly more stable than hyper-methylated MyoD by G9a. Cul4/Ddb1/Dcaf1 pathway is essential for the G9a-mediated MyoD degradation in myoblasts. By the stabilization of MyoD, Jmjd2C increases myogenic conversion of mouse embryonic fibroblasts and MyoD transcriptional activity with erasing repressive H3K9me3 level at the promoter of MyoD target genes. Collectively, Jmjd2C increases MyoD transcriptional activity to facilitate skeletal muscle differentiation by increasing MyoD stability through inhibiting G9a-dependent MyoD degradation.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteína MyoD/metabolismo , Oxirredutases N-Desmetilantes/fisiologia , Ativação Transcricional , Animais , Diferenciação Celular/genética , Células Cultivadas , Regulação para Baixo , Epigênese Genética/fisiologia , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiologia , Proteína MyoD/fisiologia , Mioblastos/fisiologia , Proteólise
8.
J Pharmacokinet Pharmacodyn ; 41(1): 1-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24258064

RESUMO

Physiologically based pharmacokinetic (PBPK) modeling is a tool used in drug discovery and human health risk assessment. PBPK models are mathematical representations of the anatomy, physiology and biochemistry of an organism and are used to predict a drug's pharmacokinetics in various situations. Tissue to plasma partition coefficients (Kp), key PBPK model parameters, define the steady-state concentration differential between tissue and plasma and are used to predict the volume of distribution. The experimental determination of these parameters once limited the development of PBPK models; however, in silico prediction methods were introduced to overcome this issue. The developed algorithms vary in input parameters and prediction accuracy, and none are considered standard, warranting further research. In this study, a novel decision-tree-based Kp prediction method was developed using six previously published algorithms. The aim of the developed classifier was to identify the most accurate tissue-specific Kp prediction algorithm for a new drug. A dataset consisting of 122 drugs was used to train the classifier and identify the most accurate Kp prediction algorithm for a certain physicochemical space. Three versions of tissue-specific classifiers were developed and were dependent on the necessary inputs. The use of the classifier resulted in a better prediction accuracy than that of any single Kp prediction algorithm for all tissues, the current mode of use in PBPK model building. Because built-in estimation equations for those input parameters are not necessarily available, this Kp prediction tool will provide Kp prediction when only limited input parameters are available. The presented innovative method will improve tissue distribution prediction accuracy, thus enhancing the confidence in PBPK modeling outputs.


Assuntos
Árvores de Decisões , Preparações Farmacêuticas/metabolismo , Plasma/metabolismo , Algoritmos , Humanos , Modelos Teóricos , Distribuição Tecidual
9.
J Audiol Otol ; 28(2): 88-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38695053

RESUMO

Sensorineural hearing loss (SNHL) is the most common sensory disorder, with a high Mendelian genetic contribution. Considering the genotypic and phenotypic heterogeneity of SNHL, the advent of next-generation sequencing technologies has revolutionized knowledge on its genomic architecture. Nonetheless, the conventional application of panel and exome sequencing in real-world practice is being challenged by the emerging need to explore the diagnostic capability of whole-genome sequencing, which enables the detection of both noncoding and structural variations. Small molecules and gene therapies represent good examples of how breakthroughs in genetic understanding can be translated into targeted therapies for SNHL. For example, targeted small molecules have been used to ameliorate autoinflammatory hearing loss caused by gain-of-function variants of NLRP3 and inner ear proteinopathy with OSBPL2 variants underlying dysfunctional autophagy. Strikingly, the successful outcomes of the first-in-human trial of OTOF gene therapy highlighted its potential in the treatment of various forms of genetic hearing loss. clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies are currently being developed for site-specific genome editing to treat human genetic disorders. These advancements have led to an era of genotype- and mechanism-based precision medicine in SNHL practice.

10.
J Control Release ; 373: 161-171, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38996922

RESUMO

Achieving precise control of nanoparticle size while maintaining consistency and high uniformity is of paramount importance for improving the efficacy of nanoparticle-based therapies and minimizing potential side effects. Although microfluidic technologies are widely used for reliable nanoparticle synthesis, they face challenges in meeting critical homogeneity requirements, mainly due to imperfect mixing efficiency. Furthermore, channel clogging during continuous operation presents a significant obstacle in terms of quality control, as it progressively impedes the mixing behavior necessary for consistent nanoparticle production for therapeutic delivery and complicates the scaling-up process. This study entailed the development of a 3D-printed novel micromixer embedded with hemispherical baffle microstructures, a dual vortex mixer (DVM), which integrates Dean vortices to generate two symmetrical counter-rotating intensified secondary flows. The DVM with a relatively large mixer volume showed rapid mixing characteristics even at a flow rate of several mL min-1 and produced highly uniform lipids, liposomes, and polymer nanoparticles in a size range (50-130 nm) and polydispersity index (PDI) values below 0.15. For the evaluation of products, SARS-CoV-2 Spike mRNA-loaded lipid nanoparticles were examined to verify protein expression in vitro and in vivo using firefly luciferase (FLuc) mRNA. This showed that the performance of the system is comparable to that of a commercial toroidal mixer. Moreover, the vigorous in-situ dispersion of nanoparticles by harnessing the power of vortex physically minimizes the occurrence of aggregation, ensuring consistent production performance without internal clogging of a half-day operation and facilitating quality control of the nanoparticles at desired scales.

11.
Mol Ther Nucleic Acids ; 35(2): 102199, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38766525

RESUMO

Pathogenic structure variations (SVs) are associated with various types of cancer and rare genetic diseases. Recent studies have used Cas9 nuclease with paired guide RNAs (gRNAs) to generate targeted chromosomal rearrangements, focusing on producing fusion proteins that cause cancer, whereas research on precision genome editing for rectifying SVs is limited. In this study, we identified a novel complex genomic rearrangement (CGR), specifically an EYA1 inversion with a deletion, implicated in branchio-oto-renal/branchio-oto syndrome. To address this, two CRISPR-based approaches were tested. First, we used Cas9 nuclease and paired gRNAs tailored to the patient's genome. The dual CRISPR-Cas9 system induced efficient correction of paracentric inversion in patient-derived fibroblast, and effectively restored the expression of EYA1 mRNA and protein, along with its transcriptional activity required to regulate the target gene expression. Additionally, we used CRISPR activation (CRISPRa), which leads to the upregulation of EYA1 mRNA expression in patient-derived fibroblasts. Moreover, CRISPRa significantly improved EYA1 protein expression and transcriptional activity essential for target gene expression. This suggests that CRISPRa-based gene therapies could offer substantial translational potential for approximately 70% of disease-causing EYA1 variants responsible for haploinsufficiency. Our findings demonstrate the potential of CRISPR-guided genome editing for correcting SVs, including those with EYA1 CGR linked to haploinsufficiency.

12.
Mol Ther Nucleic Acids ; 35(3): 102257, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39104869

RESUMO

Mutations in nuclear genes regulating mitochondrial DNA (mtDNA) replication are associated with mtDNA depletion syndromes. Using whole-genome sequencing, we identified a heterozygous mutation (c.272G>A:p.Arg91Gln) in single-stranded DNA-binding protein 1 (SSBP1), a crucial protein involved in mtDNA replisome. The proband manifested symptoms including sensorineural deafness, congenital cataract, optic atrophy, macular dystrophy, and myopathy. This mutation impeded multimer formation and DNA-binding affinity, leading to reduced efficiency of mtDNA replication, altered mitochondria dynamics, and compromised mitochondrial function. To correct this mutation, we tested two adenine base editor (ABE) variants on patient-derived fibroblasts. One variant, NG-Cas9-based ABE8e (NG-ABE8e), showed higher editing efficacy (≤30%) and enhanced mitochondrial replication and function, despite off-target editing frequencies; however, risks from bystander editing were limited due to silent mutations and off-target sites in non-translated regions. The other variant, NG-Cas9-based ABE8eWQ (NG-ABE8eWQ), had a safer therapeutic profile with very few off-target effects, but this came at the cost of lower editing efficacy (≤10% editing). Despite this, NG-ABE8eWQ-edited cells still restored replication and improved mtDNA copy number, which in turn recovery of compromised mitochondrial function. Taken together, base editing-based gene therapies may be a promising treatment for mitochondrial diseases, including those associated with SSBP1 mutations.

13.
Sci Rep ; 13(1): 11776, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479820

RESUMO

Branchio-oto-renal (BOR)/branchio-otic (BO) syndrome is a rare disorder and exhibits clinically heterogenous phenotypes, marked by abnormalities in the ear, branchial arch, and renal system. Sporadic cases of atypical BOR/BO syndrome have been recently reported; however, evidence on genotype-phenotype correlations and molecular mechanisms of those cases is lacking. We herein identified five SIX1 heterozygous variants (c.307dupC:p.Leu103Profs*51, c.373G>A:p.Glu125Lys, c.386_391del:p.Tyr129_Cys130del, c.397_399del:p.Glu133del, and c.501G>C:p.Gln167His), including three novel variants, through whole-exome sequencing in five unrelated Korean families. All eight affected individuals with SIX1 variants displayed non-syndromic hearing loss (DFNA23) or atypical BO syndrome. The prevalence of major and minor criteria for BOR/BO syndrome was significantly reduced among individuals with SIX1 variants, compared to 15 BOR/BO syndrome families with EYA1 variants. All SIX1 variants interacted with the EYA1 wild-type; their complexes were localized in the nucleus except for the p.Leu103Profs*51 variant. All mutants also showed obvious but varying degrees of reduction in DNA binding affinity, leading to a significant decrease in transcriptional activity. This study presents the first report of SIX1 variants in South Korea, expanding the genotypic and phenotypic spectrum of SIX1 variants, characterized by DFNA23 or atypical BO syndrome, and refines the diverse molecular aspects of SIX1 variants according to the EYA1-SIX1-DNA complex theory.


Assuntos
Síndrome Brânquio-Otorrenal , Surdez , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Tirosina Fosfatases/genética , Mutação , Linhagem , Síndrome Brânquio-Otorrenal/genética , Fenótipo , República da Coreia , DNA/genética , Proteínas de Homeodomínio/genética
14.
BMC Med Genomics ; 16(1): 320, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066485

RESUMO

BACKGROUND: TMC1, which encodes transmembrane channel-like protein 1, forms the mechanoelectrical transduction (MET) channel in auditory hair cells, necessary for auditory function. TMC1 variants are known to cause autosomal dominant (DFNA36) and autosomal recessive (DFNB7/11) non-syndromic hearing loss, but only a handful of TMC1 variants underlying DFNA36 have been reported, hampering analysis of genotype-phenotype correlations. METHODS: In this study, we retrospectively reviewed 338 probands in an in-house database of genetic hearing loss, evaluating the clinical phenotypes and genotypes of novel TMC1 variants associated with DFNA36. To analyze the structural impact of these variants, we generated two structural models of human TMC1, utilizing the Cryo-EM structure of C. elegans TMC1 as a template and AlphaFold protein structure database. Specifically, the lipid bilayer-embedded protein database was used to construct membrane-embedded models of TMC1. We then examined the effect of TMC1 variants on intramolecular interactions and predicted their potential pathogenicity. RESULTS: We identified two novel TMC1 variants related to DFNA36 (c.1256T > C:p.Phe419Ser and c.1444T > C:p.Trp482Arg). The affected subjects had bilateral, moderate, late-onset, progressive sensorineural hearing loss with a down-sloping configuration. The Phe419 residue located in the transmembrane domain 4 of TMC1 faces outward towards the channel pore and is in close proximity to the hydrophobic tail of the lipid bilayer. The non-polar-to-polar variant (p.Phe419Ser) alters the hydrophobicity in the membrane, compromising protein-lipid interactions. On the other hand, the Trp482 residue located in the extracellular linker region between transmembrane domains 5 and 6 is anchored to the membrane interfaces via its aromatic rings, mediating several molecular interactions that stabilize the structure of TMC1. This type of aromatic ring-based anchoring is also observed in homologous transmembrane proteins such as OSCA1.2. Conversely, the substitution of Trp with Arg (Trp482Arg) disrupts the cation-π interaction with phospholipids located in the outer leaflet of the phospholipid bilayer, destabilizing protein-lipid interactions. Additionally, Trp482Arg collapses the CH-π interaction between Trp482 and Pro511, possibly reducing the overall stability of the protein. In parallel with the molecular modeling, the two mutants degraded significantly faster compared to the wild-type protein, compromising protein stability. CONCLUSIONS: This results expand the genetic spectrum of disease-causing TMC1 variants related to DFNA36 and provide insight into TMC1 transmembrane protein-lipid interactions.


Assuntos
Perda Auditiva Neurossensorial , Proteínas de Membrana , Animais , Humanos , Caenorhabditis elegans , Perda Auditiva Neurossensorial/genética , Bicamadas Lipídicas , Proteínas de Membrana/genética , Estudos Retrospectivos
15.
Sci Rep ; 13(1): 12584, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537203

RESUMO

POU4F3, a member of the POU family of transcription factors, commonly causes autosomal dominant deafness. Exome sequencing was used to identify four novel variants in POU4F3 (NM_002700.2), including c.564dupA: p.Ala189SerfsTer26, c.743T > C:p.Leu248Pro, c.879C > A:p.Phe293Leu, and c.952G > A:p.Val318Met, and diverse aspects of the molecular consequences of their protein expression, stability, subcellular localization, and transcriptional activity were investigated. The expression of three mutant proteins, encoded by missense variants, was reduced compared to the wild-type protein, demonstrating that the mutants were unstable and vulnerable to degradation. Additionally, all the mutant proteins had distinct subcellular localization patterns. A mutant protein carrying p.Ala189SerfsTer26, in which both mono- and bi-partite nuclear localization signals were disrupted, showed abnormal subcellular localization. Resultantly, all the mutant proteins significantly reduced the transcriptional activity required to regulate the downstream target gene expression. Furthermore, we identified the altered expression of 14 downstream target genes associated with inner ear development using patient-derived lymphoblastoid cell lines. There was a significant correlation of the expression profile between patient-derived cells and the cochlear hair cells, which provided a breakthrough for cases where the collection of human cochlear samples for transcriptome studies was unfeasible. This study expanded the genotypic spectrum of POU4F3 in DFNA15, and further refined the molecular mechanisms underlying POU4F3-associated DFNA15.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Proteínas de Homeodomínio/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Perda Auditiva/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição Brn-3C/genética , Linhagem
16.
Cell Rep ; 42(7): 112701, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37384533

RESUMO

The 26S proteasome comprises 20S catalytic and 19S regulatory complexes. Approximately half of the proteasomes in cells exist as free 20S complexes; however, our mechanistic understanding of what determines the ratio of 26S to 20S species remains incomplete. Here, we show that glucose starvation uncouples 26S holoenzymes into 20S and 19S subcomplexes. Subcomplex affinity purification and quantitative mass spectrometry reveal that Ecm29 proteasome adaptor and scaffold (ECPAS) mediates this structural remodeling. The loss of ECPAS abrogates 26S dissociation, reducing degradation of 20S proteasome substrates, including puromycylated polypeptides. In silico modeling suggests that ECPAS conformational changes commence the disassembly process. ECPAS is also essential for endoplasmic reticulum stress response and cell survival during glucose starvation. In vivo xenograft model analysis reveals elevated 20S proteasome levels in glucose-deprived tumors. Our results demonstrate that the 20S-19S disassembly is a mechanism adapting global proteolysis to physiological needs and countering proteotoxic stress.


Assuntos
Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Citoplasma/metabolismo , Proteólise , Espectrometria de Massas
17.
Pharmaceutics ; 14(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35057066

RESUMO

The higher skin surface area to body weight ratio in children and the prematurity of skin in neonates may lead to higher chemical exposure as compared to adults. The objectives of this study were: (i) to provide a comprehensive review of the age-dependent anatomical and physiological changes in pediatric skin, and (ii) to construct and evaluate an age-dependent pediatric dermal absorption model. A comprehensive review was conducted to gather data quantifying the differences in the anatomy and physiology of child and adult skin. Maturation functions were developed for model parameters that were found to be age-dependent. A pediatric dermal absorption model was constructed by updating a MoBi implementation of the Dancik et al. 2013 skin permeation model with these maturation functions. Using a workflow for adult-to-child model extrapolation, the predictive performance of the model was evaluated by comparing its predicted rates of flux of diamorphine, phenobarbital and buprenorphine against experimental observations using neonatal skin. For diamorphine and phenobarbital, the model provided reasonable predictions. The ratios of predicted:observed flux in neonates for diamorphine ranged from 0.55 to 1.40. For phenobarbital, the ratios ranged from 0.93 to 1.26. For buprenorphine, the model showed acceptable predictive performance. Overall, the physiologically based pediatric dermal absorption model demonstrated satisfactory prediction accuracy. The prediction of dermal absorption in neonates using a model-based approach will be useful for both drug development and human health risk assessment.

18.
Physiol Rep ; 10(6): e15227, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35343087

RESUMO

Shift work disorders have become an emerging concern worldwide. Shift disorders encompass a wide range of illnesses that have yet to be identified. The study focused on the relationship between shift work disorders and insulin resistance. Previously, it was reported that advancing the usual mealtime of mice triggered insulin resistance. Here, the hypothesis that chronic mealtime shifts induce oxidative damage leading to chronic diseases such as type 2 diabetes was tested. It was found that mealtime shift causes imbalances between anti-oxidative capacity and reactive oxygen species (ROS) levels, indicating increased oxidative damage during the light/rest phase. This study further demonstrated that daily supplementation of antioxidants at the appropriate time of day inhibited insulin resistance caused by chronic mealtime shifts, suggesting significant and chronic health implications for shift workers. In conclusion, it was confirmed that increased ROS levels caused by mealtime shift induce insulin resistance, which is inhibited by the antioxidant melatonin.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Melatonina , Animais , Refeições , Melatonina/farmacologia , Camundongos , Espécies Reativas de Oxigênio
19.
Comput Toxicol ; 17: 100142, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34017929

RESUMO

The extent of plasma protein binding is an important compound-specific property that influences a compound's pharmacokinetic behavior and is a critical input parameter for predicting exposure in physiologically based pharmacokinetic (PBPK) modeling. When experimentally determined fraction unbound in plasma (fup) data are not available, quantitative structure-property relationship (QSPR) models can be used for prediction. Because available QSPR models were developed based on training sets containing pharmaceutical-like compounds, we compared their prediction accuracy for environmentally relevant and pharmaceutical compounds. Fup values were calculated using Ingle et al., Watanabe et al. and ADMET Predictor (Simulation Plus). The test set included 818 pharmaceutical and environmentally relevant compounds with fup values ranging from 0.01 to 1. Overall, the three QSPR models resulted in over-prediction of fup for highly binding compounds and under-prediction for low or moderately binding compounds. For highly binding compounds (0.01≤ fup ≤ 0.25), Watanabe et al. performed better with a lower mean absolute error (MAE) of 6.7% and a lower mean absolute relative prediction error (RPE) of 171.7 % than other methods. For low to moderately binding compounds, both Ingle et al. and ADMET Predictor performed better than Watanabe et al. with superior MAE and RPE values. The positive polar surface area, the number of basic functional groups and lipophilicity were the most important chemical descriptors for predicting fup. This study demonstrated that the prediction of fup was the most uncertain for highly binding compounds. This suggested that QSPR-predicted fup values should be used with caution in PBPK modeling.

20.
Mol Brain ; 13(1): 4, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931843

RESUMO

While chronic restraint stress (CRS) results in depression-like behaviors possibly through oxidative stress in the brain, its molecular etiology and the development of therapeutic strategies remain elusive. Since oxidized proteins can be targeted by the ubiquitin-proteasome system, we investigated whether increased proteasome activity might affect the stress response in mice. Transgenic mice, expressing the N-terminally deleted version of α3 subunit (α3ΔN) of the proteasome, which has been shown to generate open-gated mutant proteasomes, in the forebrain were viable and fertile, but showed higher proteasome activity. After being challenged with CRS for 14 d, the mutant mice with hyperactive proteasomes showed significantly less immobility time in the forced swimming test compared with their wild-type littermates, suggesting that the α3ΔN transgenic mice are resistant to CRS. The accumulation of ER stress markers, such as polyubiquitin conjugates and phospho-IRE1α, was also significantly delayed in the hippocampus of the mutants. Notably, α3ΔN mice exhibited little deficits in other behavioral tasks, suggesting that stress resilience is likely due to the degradation of misfolded proteins by the open-gated proteasomes. These data strongly indicate that not only is the proteasome a critical modulator of stress response in vivo but also a possible therapeutic target for reducing chronic stress.


Assuntos
Depressão/enzimologia , Hipocampo/enzimologia , Proteínas do Tecido Nervoso/fisiologia , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/fisiologia , Restrição Física/efeitos adversos , Animais , Ansiedade/etiologia , Doença Crônica , Condicionamento Clássico , Depressão/etiologia , Depressão/genética , Modelos Animais de Doenças , Teste de Labirinto em Cruz Elevado , Estresse do Retículo Endoplasmático , Indução Enzimática , Comportamento Exploratório , Medo , Feminino , Proteínas Intrinsicamente Desordenadas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA