Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 583(7814): 66-71, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612224

RESUMO

Dental enamel is a principal component of teeth1, and has evolved to bear large chewing forces, resist mechanical fatigue and withstand wear over decades2. Functional impairment and loss of dental enamel, caused by developmental defects or tooth decay (caries), affect health and quality of life, with associated costs to society3. Although the past decade has seen progress in our understanding of enamel formation (amelogenesis) and the functional properties of mature enamel, attempts to repair lesions in this material or to synthesize it in vitro have had limited success4-6. This is partly due to the highly hierarchical structure of enamel and additional complexities arising from chemical gradients7-9. Here we show, using atomic-scale quantitative imaging and correlative spectroscopies, that the nanoscale crystallites of hydroxylapatite (Ca5(PO4)3(OH)), which are the fundamental building blocks of enamel, comprise two nanometric layers enriched in magnesium flanking a core rich in sodium, fluoride and carbonate ions; this sandwich core is surrounded by a shell with lower concentration of substitutional defects. A mechanical model based on density functional theory calculations and X-ray diffraction data predicts that residual stresses arise because of the chemical gradients, in agreement with preferential dissolution of the crystallite core in acidic media. Furthermore, stresses may affect the mechanical resilience of enamel. The two additional layers of hierarchy suggest a possible new model for biological control over crystal growth during amelogenesis, and hint at implications for the preservation of biomarkers during tooth development.


Assuntos
Amelogênese , Esmalte Dentário/química , Ácidos/química , Cálcio/química , Carbonatos/química , Cristalização , Teoria da Densidade Funcional , Esmalte Dentário/ultraestrutura , Durapatita/química , Fluoretos/química , Humanos , Magnésio/química , Microscopia Eletrônica de Transmissão e Varredura , Sódio/química , Tomografia , Difração de Raios X
2.
Nature ; 584(7819): E3, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32690940

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 560(7718): 345-349, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30111789

RESUMO

Solid-liquid interfaces are important in a range of chemical, physical and biological processes1-4, but are often not fully understood owing to the lack of high-resolution characterization methods that are compatible with both solid and liquid components5. For example, the related processes of dendritic deposition of lithium metal and the formation of solid-electrolyte interphase layers6,7 are known to be key determinants of battery safety and performance in high-energy-density lithium-metal batteries. But exactly what is involved in these two processes, which occur at a solid-liquid interface, has long been debated8-11 because of the challenges of observing such interfaces directly. Here we adapt a technique that has enabled cryo-transmission electron microscopy (cryo-TEM) of hydrated specimens in biology-immobilization of liquids by rapid freezing, that is, vitrification12. By vitrifying the liquid electrolyte we preserve it and the structures at solid-liquid interfaces in lithium-metal batteries in their native state, and thus enable structural and chemical mapping of these interfaces by cryo-scanning transmission electron microscopy (cryo-STEM). We identify two dendrite types coexisting on the lithium anode, each with distinct structure and composition. One family of dendrites has an extended solid-electrolyte interphase layer, whereas the other unexpectedly consists of lithium hydride instead of lithium metal and may contribute disproportionately to loss of battery capacity. The insights into the formation of lithium dendrites that our work provides demonstrate the potential of cryogenic electron microscopy for probing nanoscale processes at intact solid-liquid interfaces in functional devices such as rechargeable batteries.

4.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38912679

RESUMO

This study explores the effect of molecular permanent dipole moment (PDM) on aggregation of guest molecules in phosphorescent host-guest organic light-emitting diodes (OLEDs). Through a combination of photoluminescence measurements, high-angle annular dark-field scanning transmission electron microscopy analysis, and an Ising model based physical vapor-deposition simulation, we show that higher PDM of tris[2-phenylpyridinato-C2,N]iridium(III) guest can actually lead to a reduced aggregation relative to tris[bis[2-(2-pyridinyl-N)phenyl-C] (acetylacetonato)iridium(III) when doped into a non-polar host 1,3,5-tris(carbazol-9-yl)benzene. This study further explores the effect of host polarity by using a polar host 3',5'-di(carbazol-9-yl)-[1,1'-biphenyl]-3,5-dicarbonitrile, and it is shown that the polar host leads to reduced guest aggregation. This study provides a comprehensive understanding of the impact of molecular PDM on OLED material efficiency and stability, providing insights for optimizing phosphorescent OLED materials.

5.
Nano Lett ; 23(16): 7442-7448, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37566785

RESUMO

The catalytic performance of atomically dispersed catalysts (ADCs) is greatly influenced by their atomic configurations, such as atom-atom distances, clustering of atoms into dimers and trimers, and their distributions. Scanning transmission electron microscopy (STEM) is a powerful technique for imaging ADCs at the atomic scale; however, most STEM analyses of ADCs thus far have relied on human labeling, making it difficult to analyze large data sets. Here, we introduce a convolutional neural network (CNN)-based algorithm capable of quantifying the spatial arrangement of different adatom configurations. The algorithm was tested on different ADCs with varying support crystallinity and homogeneity. Results show that our algorithm can accurately identify atom positions and effectively analyze large data sets. This work provides a robust method to overcome a major bottleneck in STEM analysis for ADC catalyst research. We highlight the potential of this method to serve as an on-the-fly analysis tool for catalysts in future in situ microscopy experiments.

6.
Nano Lett ; 23(14): 6414-6423, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37399449

RESUMO

Graphene oxide (GO) is a promising membrane material for chemical separations, including water treatment. However, GO has often required postsynthesis chemical modifications, such as linkers or intercalants, to improve either the permeability, performance, or mechanical integrity of GO membranes. In this work, we explore two different feedstocks of GO to investigate chemical and physical differences, where we observe up to a 100× discrepancy in the permeability-mass loading trade-off while maintaining nanofiltration capacity. GO membranes also show structural stability and chemical resilience to harsh pH conditions and bleach treatment. We probe GO and the resulting assembled membranes through a variety of characterization approaches, including a novel scanning-transmission-electron-microscopy-based visualization approach, to connect differences in sheet stacking and oxide functional groups to significant improvements in permeability and chemical stability.

7.
Angew Chem Int Ed Engl ; 61(28): e202205632, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35470950

RESUMO

Carbon-supported nitrogen-coordinated single-metal site catalysts (i.e., M-N-C, M: Fe, Co, or Ni) are active for the electrochemical CO2 reduction reaction (CO2 RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N-M bond structures and coordination is limited. Herein, we expand the coordination environments of M-N-C catalysts by designing dual-metal active sites. The Ni-Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N-coordinated dual-metal site configurations are 2N-bridged (Fe-Ni)N6 , in which FeN4 and NiN4 moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual-metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single-metal sites (FeN4 or NiN4 ) with improved intrinsic catalytic activity and selectivity.

8.
Small ; 17(28): e2100388, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080781

RESUMO

Van der Waals materials composed of stacks of individual atomic layers have attracted considerable attention due to their exotic electronic properties that can be altered by, e.g., manipulating the twist angle of bilayer materials or the stacking sequence of trilayer materials. To fully understand and control the unique properties of these few-layer materials, a technique that can provide information about their local in-plane structural deformations, twist direction, and out-of-plane structure is needed. In principle, interference in overlap regions of Bragg disks originating from separate layers of a material encodes 3D information about the relative positions of atoms in the corresponding layers. Here, an interferometric 4D scanning transmission electron microscopy technique is described that utilizes this phenomenon to extract precise structural information from few-layer materials with nm-scale resolution. It is demonstrated how this technique enables measurement of local pm-scale in-plane lattice distortions as well as twist direction and average interlayer spacings in bilayer and trilayer graphene, and therefore provides a means to better understand the interplay between electronic properties and precise structural arrangements of few-layer 2D materials.

9.
Angew Chem Int Ed Engl ; 59(4): 1384-1396, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31081976

RESUMO

Interfaces play a fundamental role in many areas of chemistry. However, their localized nature requires characterization techniques with high spatial resolution in order to fully understand their structure and properties. State-of-the-art atomic resolution or in situ scanning transmission electron microscopy and electron energy-loss spectroscopy are indispensable tools for characterizing the local structure and chemistry of materials with single-atom resolution, but they are not able to measure many properties that dictate function, such as vibrational modes or charge transfer, and are limited to room-temperature samples containing no liquids. Here, we outline emerging electron microscopy techniques that are allowing these limitations to be overcome and highlight several recent studies that were enabled by these techniques. We then provide a vision for how these techniques can be paired with each other and with in situ methods to deliver new insights into the static and dynamic behavior of functional interfaces.

14.
Microsc Microanal ; 23(1): 155-162, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28228169

RESUMO

Lithium sulfur (Li-S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li-S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon-sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstrate two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon-sulfur composites synthesized for use as Li-S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.

15.
Microsc Microanal ; 22(6): 1338-1349, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27869059

RESUMO

Scanning transmission electron microscopy (STEM) allows atomic scale characterization of solid-solid interfaces, but has seen limited applications to solid-liquid interfaces due to the volatility of liquids in the microscope vacuum. Although cryo-electron microscopy is routinely used to characterize hydrated samples stabilized by rapid freezing, sample thinning is required to access the internal interfaces of thicker specimens. Here, we adapt cryo-focused ion beam (FIB) "lift-out," a technique recently developed for biological specimens, to prepare intact internal solid-liquid interfaces for high-resolution structural and chemical analysis by cryo-STEM. To guide the milling process we introduce a label-free in situ method of localizing subsurface structures in suitable materials by energy dispersive X-ray spectroscopy (EDX). Monte Carlo simulations are performed to evaluate the depth-probing capability of the technique, and show good qualitative agreement with experiment. We also detail procedures to produce homogeneously thin lamellae, which enable nanoscale structural, elemental, and chemical analysis of intact solid-liquid interfaces by analytical cryo-STEM. This work demonstrates the potential of cryo-FIB lift-out and cryo-STEM for understanding physical and chemical processes at solid-liquid interfaces.

16.
J Colloid Interface Sci ; 674: 612-623, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38945028

RESUMO

The interlayer distances in layered electrode materials, influenced by the chemical composition of the confined interlayer regions, have a significant impact on their electrochemical performance. Chemical preintercalation of inorganic metal ions affects the interlayer spacing, yet expansion is limited by the hydrated ion radii. Herein, we demonstrate that using varying concentrations of decyltrimethylammonium (DTA+) and cetyltrimethylammonium (CTA+) cations in chemical preintercalation synthesis followed by hydrothermal treatment, the interlayer distance of hybrid bilayered vanadium oxides (BVOs) can be tuned between 11.1 Å and 35.6 Å. Our analyses reveal that these variations in interlayer spacing are due to different amounts of structural water and alkylammonium cations confined within the interlayer regions. Increased concentrations of alkylammonium cations not only expand the interlayer spacing but also induce local bending and disordering of the V-O bilayers. Electrochemical cycling of hybrid BVO electrodes in non-aqueous lithium-ion cells show that specific capacities decrease as interlayer regions expand, suggesting that the densely packed alkylammonium cations obstruct intercalation sites and hinder Li+ ion transport. Furthermore, we found that greater layer separation facilitates the dissolution of active material into the electrolyte, resulting in rapid capacity decay during extended cycling. This study emphasizes that layered electrode materials require both spacious interlayer regions as well as high structural and chemical stabilities, providing guidelines for structural engineering of organic-inorganic hybrids.

17.
J Vis Exp ; (192)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-37602848

RESUMO

ARTICLES DISCUSSED: Moon, T., Colletta, M., Kourkoutis, L. F. Nanoscale characterization of liquid-solid interfaces by couple cryo-focused ion beam milling with scanning electron microscopy and spectroscopy. Journal of Visualized Experiments. (185), e61955 (2022). Ohtsuka, M., Muto, S. Quantitative atomic-site analysis of functional dopants/point defects in crystalline materials by electron-channeling-enhanced microanalysis. Journal of Visualized Experiments. (171), e62015 (2021). Miao, L., Chmielewski, A., Mukherjee, D., Alem, N. Picometer-precision atomic position tracking through electron microscopy. Journal of Visualized Experiments. (173), e62164 (2021). Unocic, K. A. et al. Performing in situ closed-cell gas reactions in the transmission electron microscope. Journal of Visualized Experiments. (173), e62174 (2021). Zheng, F. et al. Magnetic field mapping using off-axis electron holography in the transmission electron microscope. Journal of Visualized Experiments. (166), e61907 (2020).


Assuntos
Holografia , Disciplinas das Ciências Naturais , Microscopia Eletrônica de Varredura , Elétrons , Campos Magnéticos
18.
ACS Appl Mater Interfaces ; 15(22): 26525-26537, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216415

RESUMO

Lithium preintercalated bilayered vanadium oxide (LVO or δ-LixV2O5·nH2O) and graphene oxide (GO) nanoflakes were assembled using a concentrated lithium chloride solution and annealed under vacuum at 200 °C to form two-dimensional (2D) δ-LixV2O5·nH2O and reduced GO (rGO) heterostructures. We found that the Li+ ions from LiCl enhanced the oxide/carbon heterointerface formation and served as stabilizing ions to improve structural and electrochemical stability. The graphitic content of the heterostructure could be easily controlled by changing the initial GO concentration prior to assembly. We found that increasing the GO content in our heterostructure composition helped inhibit the electrochemical degradation of LVO during cycling and improved the rate capability of the heterostructure. A combination of scanning electron microscopy and X-ray diffraction was used to help confirm that a 2D heterointerface formed between LVO and GO, and the final phase composition was determined using energy-dispersive X-ray spectroscopy and thermogravimetric analysis. Scanning transmission electron microscopy and electron energy-loss spectroscopy were additionally used to examine the heterostructures at high resolution, mapping the orientations of rGO and LVO layers and locally imaging their interlayer spacings. Further, electrochemical cycling of the cation-assembled LVO/rGO heterostructures in Li-ion cells with a non-aqueous electrolyte revealed that increasing the rGO content led to improved cycling stability and rate performance, despite slightly decreased charge storage capacity. The heterostructures with 0, 10, 20, and 35 wt % rGO exhibited capacities of 237, 216, 174, and 150 mAh g-1, respectively. Moreover, the LVO/rGO-35 wt % and LVO/rGO-20 wt % heterostructures retained 75% (110 mAh g-1) and 67% (120 mAh g-1) of their initial capacities after increasing the specific current from 20 to 200 mA g-1, while the LVO/rGO-10 wt % sample retained only 48% (107 mAh g-1) of its initial capacity under the same cycling conditions. In addition, the cation-assembled LVO/rGO electrodes exhibited enhanced electrochemical stability compared to electrodes prepared through physical mixing of LVO and GO nanoflakes in the same ratios as the heterostructure electrodes, further revealing the stabilizing effect of a 2D heterointerface. The cation-driven assembly approach, explored in this work using Li+ cations, was found to induce and stabilize the formation of stacked 2D layers of rGO and exfoliated LVO. The reported assembly methodology can be applied for a variety of systems utilizing 2D materials with complementary properties for applications as electrodes in energy storage devices.

19.
Nat Commun ; 14(1): 3075, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244900

RESUMO

Copper-based catalyst is uniquely positioned to catalyze the hydrocarbon formations through electrochemical CO2 reduction. The catalyst design freedom is limited for alloying copper with H-affinitive elements represented by platinum group metals because the latter would easily drive the hydrogen evolution reaction to override CO2 reduction. We report an adept design of anchoring atomically dispersed platinum group metal species on both polycrystalline and shape-controlled Cu catalysts, which now promote targeted CO2 reduction reaction while frustrating the undesired hydrogen evolution reaction. Notably, alloys with similar metal formulations but comprising small platinum or palladium clusters would fail this objective. With an appreciable amount of CO-Pd1 moieties on copper surfaces, facile CO* hydrogenation to CHO* or CO-CHO* coupling is now viable as one of the main pathways on Cu(111) or Cu(100) to selectively produce CH4 or C2H4 through Pd-Cu dual-site pathways. The work broadens copper alloying choices for CO2 reduction in aqueous phases.

20.
ACS Nano ; 16(1): 1358-1367, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35000379

RESUMO

The performance of energy storage materials is often governed by their structure at the atomic scale. Conventional electron microscopy can provide detailed information about materials at these length scales, but direct imaging of light elements such as lithium presents a challenge. While several recent techniques allow lithium columns to be distinguished, these typically either involve complex contrast mechanisms that make image interpretation difficult or require significant expertise to perform. Here, we demonstrate how center-of-mass scanning transmission electron microscopy (CoM-STEM) provides an enhanced ability for simultaneous imaging of lithium and heavier element columns in lithium ion conductors. Through a combination of experiments and multislice electron scattering calculations, we show that CoM-STEM is straightforward to perform and produces directly interpretable contrast for thin samples, while being more robust to variations in experimental parameters than previously demonstrated techniques. As a result, CoM-STEM is positioned to become a reliable and facile method for directly probing all elements within energy storage materials at the atomic scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA