Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Bioinformatics ; 24(1): 275, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403016

RESUMO

BACKGROUND: P4 medicine (predict, prevent, personalize, and participate) is a new approach to diagnosing and predicting diseases on a patient-by-patient basis. For the prevention and treatment of diseases, prediction plays a fundamental role. One of the intelligent strategies is the design of deep learning models that can predict the state of the disease using gene expression data. RESULTS: We create an autoencoder deep learning model called DeeP4med, including a Classifier and a Transferor that predicts cancer's gene expression (mRNA) matrix from its matched normal sample and vice versa. The range of the F1 score of the model, depending on tissue type in the Classifier, is from 0.935 to 0.999 and in Transferor from 0.944 to 0.999. The accuracy of DeeP4med for tissue and disease classification was 0.986 and 0.992, respectively, which performed better compared to seven classic machine learning models (Support Vector Classifier, Logistic Regression, Linear Discriminant Analysis, Naive Bayes, Decision Tree, Random Forest, K Nearest Neighbors). CONCLUSIONS: Based on the idea of DeeP4med, by having the gene expression matrix of a normal tissue, we can predict its tumor gene expression matrix and, in this way, find effective genes in transforming a normal tissue into a tumor tissue. Results of Differentially Expressed Genes (DEGs) and enrichment analysis on the predicted matrices for 13 types of cancer showed a good correlation with the literature and biological databases. This led that by using the gene expression matrix, to train the model with features of each person in a normal and cancer state, this model could predict diagnosis based on gene expression data from healthy tissue and be used to identify possible therapeutic interventions for those patients.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Transcriptoma , Teorema de Bayes , Neoplasias/genética , Aprendizado de Máquina
2.
Br J Cancer ; 125(3): 337-350, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33927352

RESUMO

BACKGROUND: Glioblastoma is the most aggressive type of brain cancer with high-levels of intra- and inter-tumour heterogeneity that contribute to its rapid growth and invasion within the brain. However, a spatial characterisation of gene signatures and the cell types expressing these in different tumour locations is still lacking. METHODS: We have used a deep convolutional neural network (DCNN) as a semantic segmentation model to segment seven different tumour regions including leading edge (LE), infiltrating tumour (IT), cellular tumour (CT), cellular tumour microvascular proliferation (CTmvp), cellular tumour pseudopalisading region around necrosis (CTpan), cellular tumour perinecrotic zones (CTpnz) and cellular tumour necrosis (CTne) in digitised glioblastoma histopathological slides from The Cancer Genome Atlas (TCGA). Correlation analysis between segmentation results from tumour images together with matched RNA expression data was performed to identify genetic signatures that are specific to different tumour regions. RESULTS: We found that spatially resolved gene signatures were strongly correlated with survival in patients with defined genetic mutations. Further in silico cell ontology analysis along with single-cell RNA sequencing data from resected glioblastoma tissue samples showed that these tumour regions had different gene signatures, whose expression was driven by different cell types in the regional tumour microenvironment. Our results further pointed to a key role for interactions between microglia/pericytes/monocytes and tumour cells that occur in the IT and CTmvp regions, which may contribute to poor patient survival. CONCLUSIONS: This work identified key histopathological features that correlate with patient survival and detected spatially associated genetic signatures that contribute to tumour-stroma interactions and which should be investigated as new targets in glioblastoma. The source codes and datasets used are available in GitHub: https://github.com/amin20/GBM_WSSM .


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Glioblastoma/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Neoplasias Encefálicas/genética , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Redes Neurais de Computação , Análise de Célula Única , Nicho de Células-Tronco , Análise de Sobrevida , Microambiente Tumoral
3.
Technol Cancer Res Treat ; 23: 15330338241250324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775067

RESUMO

Advancements in AI have notably changed cancer research, improving patient care by enhancing detection, survival prediction, and treatment efficacy. This review covers the role of Machine Learning, Soft Computing, and Deep Learning in oncology, explaining key concepts and algorithms (like SVM, Naïve Bayes, and CNN) in a clear, accessible manner. It aims to make AI advancements understandable to a broad audience, focusing on their application in diagnosing, classifying, and predicting various cancer types, thereby underlining AI's potential to better patient outcomes. Moreover, we present a tabular summary of the most significant advances from the literature, offering a time-saving resource for readers to grasp each study's main contributions. The remarkable benefits of AI-powered algorithms in cancer care underscore their potential for advancing cancer research and clinical practice. This review is a valuable resource for researchers and clinicians interested in the transformative implications of AI in cancer care.


Assuntos
Algoritmos , Inteligência Artificial , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Pesquisa Biomédica , Aprendizado de Máquina
4.
J Pers Med ; 10(4)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198332

RESUMO

In recent years, improved deep learning techniques have been applied to biomedical image processing for the classification and segmentation of different tumors based on magnetic resonance imaging (MRI) and histopathological imaging (H&E) clinical information. Deep Convolutional Neural Networks (DCNNs) architectures include tens to hundreds of processing layers that can extract multiple levels of features in image-based data, which would be otherwise very difficult and time-consuming to be recognized and extracted by experts for classification of tumors into different tumor types, as well as segmentation of tumor images. This article summarizes the latest studies of deep learning techniques applied to three different kinds of brain cancer medical images (histology, magnetic resonance, and computed tomography) and highlights current challenges in the field for the broader applicability of DCNN in personalized brain cancer care by focusing on two main applications of DCNNs: classification and segmentation of brain cancer tumors images.

5.
Med Biol Eng Comput ; 58(5): 1031-1045, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124225

RESUMO

Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients' survival, which can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely, DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients' survival rate based on histopathological images (class I, 0-6 months; class II, 6-12 months; class III, 12-24 months; and class IV, >24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable classifier for brain cancer patients' survival rate classification based on histopathological images. Finally, analysis of the frequency of mutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer. Graphical abstract A DCNN model was generated to accurately predict survival rates of brain cancer patients (classified in 4 different classes) accurately. After training the model using images from H&E stained tissue biopsies from The Cancer Genome Atlas database (TCGA, left), the model can predict for each patient, based on a histological image (top right), its survival class accurately (bottom right).


Assuntos
Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Aprendizado Profundo , Histocitoquímica , Humanos , Análise de Sobrevida
6.
Med Biol Eng Comput ; 56(5): 721-732, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28891042

RESUMO

Cancer is the second important morbidity and mortality factor among women and the most incident type is breast cancer. This paper suggests a hybrid computational intelligence model based on unsupervised and supervised learning techniques, i.e., self-organizing map (SOM) and complex-valued neural network (CVNN), for reliable detection of breast cancer. The dataset used in this paper consists of 822 patients with five features (patient's breast mass shape, margin, density, patient's age, and Breast Imaging Reporting and Data System assessment). The proposed model was used for the first time and can be categorized in two stages. In the first stage, considering the input features, SOM technique was used to cluster the patients with the most similarity. Then, in the second stage, for each cluster, the patient's features were applied to complex-valued neural network and dealt with to classify breast cancer severity (benign or malign). The obtained results corresponding to each patient were compared to the medical diagnosis results using receiver operating characteristic analyses and confusion matrix. In the testing phase, health and disease detection ratios were 94 and 95%, respectively. Accordingly, the superiority of the proposed model was proved and can be used for reliable and robust detection of breast cancer.


Assuntos
Inteligência Artificial , Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer , Tomada de Decisões , Feminino , Humanos , Modelos Teóricos , Curva ROC , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA