Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 295(38): 13250-13266, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32723868

RESUMO

Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism. Examining lipogenesis in cultured adipocytes, glucose was essential for insulin to stimulate the synthesis of fatty acids and glyceride-glycerol. Importantly, glucose was dispensable for lipogenesis in the absence of insulin, suggesting that distinct carbon sources are used with or without insulin. Metabolic tracing studies revealed that glucose was required for insulin to stimulate pathways providing carbon substrate, NADPH, and glycerol 3-phosphate for lipid synthesis and storage. Glucose also displaced leucine as a lipogenic substrate and was necessary to suppress fatty acid oxidation. Together, glucose provided substrates and metabolic control for insulin to promote lipogenesis in adipocytes. This contrasted with the suppression of lipolysis by insulin signaling, which occurred independently of glucose. Given previous observations that signal transduction acts primarily before glucose uptake in adipocytes, these data are consistent with a model whereby insulin initially utilizes protein phosphorylation to stimulate lipid anabolism, which is sustained by subsequent glucose metabolism. Consequently, lipid abundance was sensitive to glucose availability, both during adipogenesis and in Drosophila flies in vivo Together, these data highlight the importance of glucose metabolism to support insulin action, providing a complementary regulatory mechanism to signal transduction to stimulate adipose anabolism.


Assuntos
Adipócitos/metabolismo , Proteínas de Drosophila/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Lipogênese , Transdução de Sinais , Células 3T3-L1 , Animais , Drosophila melanogaster , Glicerofosfatos/metabolismo , Camundongos , NADP/metabolismo
2.
J Biol Chem ; 294(45): 16729-16739, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548312

RESUMO

The Ser/Thr protein kinase Akt regulates essential biological processes such as cell survival, growth, and metabolism. Upon growth factor stimulation, Akt is phosphorylated at Ser474; however, how this phosphorylation contributes to Akt activation remains controversial. Previous studies, which induced loss of Ser474 phosphorylation by ablating its upstream kinase mTORC2, have implicated Ser474 phosphorylation as a driver of Akt substrate specificity. Here we directly studied the role of Akt2 Ser474 phosphorylation in 3T3-L1 adipocytes by preventing Ser474 phosphorylation without perturbing mTORC2 activity. This was achieved by utilizing a chemical genetics approach, where ectopically expressed S474A Akt2 was engineered with a W80A mutation to confer resistance to the Akt inhibitor MK2206, and thus allow its activation independent of endogenous Akt. We found that insulin-stimulated phosphorylation of four bona fide Akt substrates (TSC2, PRAS40, FOXO1/3a, and AS160) was reduced by ∼50% in the absence of Ser474 phosphorylation. Accordingly, insulin-stimulated mTORC1 activation, protein synthesis, FOXO nuclear exclusion, GLUT4 translocation, and glucose uptake were attenuated upon loss of Ser474 phosphorylation. We propose a model where Ser474 phosphorylation is required for maximal Akt2 kinase activity in adipocytes.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Núcleo Celular/metabolismo , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Insulina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
3.
Brief Bioinform ; 19(2): 179-187, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802932

RESUMO

Motivation: Despite being essential for numerous clinical and research applications, high-resolution human leukocyte antigen (HLA) typing remains challenging and laboratory tests are also time-consuming and labour intensive. With next-generation sequencing data becoming widely accessible, on-demand in silico HLA typing offers an economical and efficient alternative. Results: In this study we evaluate the HLA typing accuracy and efficiency of five computational HLA typing methods by comparing their predictions against a curated set of > 1000 published polymerase chain reaction-derived HLA genotypes on three different data sets (whole genome sequencing, whole exome sequencing and transcriptomic sequencing data). The highest accuracy at clinically relevant resolution (four digits) we observe is 81% on RNAseq data by PHLAT and 99% accuracy by OptiType when limited to Class I genes only. We also observed variability between the tools for resource consumption, with runtime ranging from an average of 5 h (HLAminer) to 7 min (seq2HLA) and memory from 12.8 GB (HLA-VBSeq) to 0.46 GB (HLAminer) per sample. While a minimal coverage is required, other factors also determine prediction accuracy and the results between tools do not correlate well. Therefore, by combining tools, there is the potential to develop a highly accurate ensemble method that is able to deliver fast, economical HLA typing from existing sequencing data.


Assuntos
Algoritmos , Antígenos HLA/genética , Teste de Histocompatibilidade/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , Exoma , Genótipo , Humanos
4.
J Biol Chem ; 293(10): 3806-3818, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358326

RESUMO

Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large family of proteins that mainly function in lipid transport and sensing. ORP5 is an endoplasmic reticulum (ER)-anchored protein implicated in lipid transfer at the contact sites between the ER and other membranes. Recent studies indicate that ORP5 is also involved in cancer cell invasion and tumor progression. However, the molecular mechanism underlying ORP5's involvement in cancer is unclear. Here, we report that ORP5 promotes cell proliferation and motility of HeLa cells, an effect that depends on its functional OSBP-related domain (ORD). We also found that ORP5 depletion or substitutions of key residues located within ORP5-ORD and responsible for interactions with lipids interfered with cell proliferation, migration, and invasion. ORP5 interacted with the protein mechanistic target of rapamycin (mTOR), and this interaction also required ORP5-ORD. Of note, whereas ORP5 overexpression induced mTOR complex 1 (mTORC1) activity, ORP5 down-regulation had the opposite effect. Finally, ORP5-depleted cells exhibited impaired mTOR localization to lysosomes, which may have accounted for the blunted mTORC1 activation. Together, our results suggest that ORP5 expression is positively correlated with mTORC1 signaling and that ORP5 stimulates cell proliferation, at least in part, by activating mTORC1.


Assuntos
Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/agonistas , Neoplasias/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Substituição de Aminoácidos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ativação Enzimática , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lisossomos/enzimologia , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Interferência de RNA , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/química , Receptores de Esteroides/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Nat Rev Endocrinol ; 19(8): 443-459, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221402

RESUMO

Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipogênese
6.
Mol Biol Cell ; 33(14): ar131, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129766

RESUMO

The biogenesis of lipid droplets (LDs), key organelles for cellular lipid storage and homeostasis, remains poorly understood. Seipin is essential to normal LD biogenesis but exactly how it regulates LD initiation remains to be elucidated. Our previous results suggested that seipin may bind anionic phospholipids such as PI(3)P. Here, we investigate whether PI(3)P is functionally linked to seipin and whether PI(3)P can also impact LD biogenesis. In seipin-deficient cells, there were enlarged PI(3)P puncta where its effector, DFCP1, also appeared to congregate. Reducing cellular PI(3)P partially rescued the defective LD initiation caused by seipin deficiency. Increasing PI(3)P impeded the lipidation of nascent LDs. We further demonstrated that DFCP1 localized to LDs and facilitated the efficient lipidation of nascent LDs. However, the normal function and localization of DFCP1 were disrupted when cellular PI(3)P homeostasis was perturbed. Our results thus identify PI(3)P as a novel regulator of LD initiation and suggest that PI(3)P may impact the biogenesis of LDs through DFCP1.


Assuntos
Gotículas Lipídicas , Fosfolipídeos , Gotículas Lipídicas/metabolismo , Fosfolipídeos/metabolismo , Metabolismo dos Lipídeos
7.
J Cell Biol ; 219(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653673

RESUMO

Lipid droplets (LDs) are evolutionarily conserved organelles that play important roles in cellular metabolism. Each LD is enclosed by a monolayer of phospholipids, distinct from bilayer membranes. During LD biogenesis and growth, this monolayer of lipids expands by acquiring phospholipids from the endoplasmic reticulum (ER) through nonvesicular mechanisms. Here, in a mini-screen, we find that ORP5, an integral membrane protein of the ER, can localize to ER-LD contact sites upon oleate loading. ORP5 interacts with LDs through its ligand-binding domain, and ORP5 deficiency enhances neutral lipid synthesis and increases the size of LDs. Importantly, there is significantly more phosphatidylinositol-4-phosphate (PI(4)P) and less phosphatidylserine (PS) on LDs in ORP5-deficient cells than in normal cells. The increased presence of PI(4)P on LDs in ORP5-deficient cells requires phosphatidylinositol 4-kinase 2-α. Our results thus demonstrate the existence of PI(4)P on LDs and suggest that LD-associated PI(4)P may be primarily used by ORP5 to deliver PS to LDs.


Assuntos
Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Esteroides/metabolismo , Células HEK293 , Humanos , Metabolismo dos Lipídeos
8.
Mol Metab ; 25: 83-94, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31105056

RESUMO

OBJECTIVE: Insulin suppresses adipose tissue lipolysis after a meal, playing a key role in metabolic homeostasis. This is mediated via the kinase Akt and its substrate phosphodiesterase 3B (PDE3B). Once phosphorylated and activated, PDE3B hydrolyses cAMP leading to the inactivation of cAMP-dependent protein kinase (PKA) and suppression of lipolysis. However, several gaps have emerged in this model. Here we investigated the role of the PDE3B-interacting protein, α/ß-hydrolase ABHD15 in this process. METHODS: Lipolysis, glucose uptake, and signaling were assessed in ABHD15 knock down and knock out adipocytes and fat explants in response to insulin and/or ß-adrenergic receptor agonist. Glucose and fatty acid metabolism were determined in wild type and ABHD15-/- littermate mice. RESULTS: Deletion of ABHD15 in adipocytes resulted in a significant defect in insulin-mediated suppression of lipolysis with no effect on insulin-mediated glucose uptake. ABHD15 played a role in suppressing PKA signaling as phosphorylation of the PKA substrate Perilipin-1 remained elevated in response to insulin upon ABHD15 deletion. ABHD15-/- mice had normal glucose metabolism but defective fatty acid metabolism: plasma fatty acids were elevated upon fasting and in response to insulin, and this was accompanied by elevated liver triglycerides upon ß-adrenergic receptor activation. This is likely due to hyperactive lipolysis as evident by the larger triglyceride depletion in brown adipose tissue in these mice. Finally, ABHD15 protein levels were reduced in adipocytes from mice fed a Western diet, further implicating this protein in metabolic homeostasis. CONCLUSIONS: Collectively, ABHD15 regulates adipocyte lipolysis and liver lipid accumulation, providing novel therapeutic opportunities for modulating lipid homeostasis in disease.


Assuntos
Tecido Adiposo/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Produto da Acumulação Lipídica/fisiologia , Lipólise/fisiologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Metabolismo dos Carboidratos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Jejum , Ácidos Graxos/sangue , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Metabolismo dos Lipídeos , Lipólise/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Knockout , Perilipina-1/metabolismo , Fosforilação , Transdução de Sinais , Triglicerídeos
10.
PLoS One ; 9(11): e111661, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369032

RESUMO

Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for mammalian organ development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Coração/embriologia , Dente/embriologia , Animais , Camundongos , Miocárdio/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Dente/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA