Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(3): 033605, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540884

RESUMO

The many-body decay of extended collections of two-level systems remains an open problem. Here, we investigate whether an array of emitters coupled to a one-dimensional bath undergoes Dicke superradiance. This is a process whereby a completely inverted system becomes correlated via dissipation, leading to the release of all the energy in the form of a rapid photon burst. We derive the minimal conditions for the burst to happen as a function of the number of emitters, the chirality of the waveguide, and the single-emitter optical depth, both for ordered and disordered ensembles. Many-body superradiance occurs because the initial fluctuation that triggers the emission is amplified throughout the decay process. In one-dimensional baths, this avalanchelike behavior leads to a spontaneous mirror symmetry breaking, with large shot-to-shot fluctuations in the number of photons emitted to the left and right. Superradiant bursts may thus be a smoking gun for the generation of correlated photon states of exotic quantum statistics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA