Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(2): 301-302, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33064984

RESUMO

Ott et al. report the results of a phase 1B study in which a personalized neoantigen vaccine was combined with programmed death receptor-1 blockade in patients with advanced cancers. The study provides a framework for combinatorial vaccine therapies that could mount robust T cell responses, enhance tumor killing, and provide clinical benefit.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Neoplasias da Bexiga Urinária , Antígenos de Neoplasias , Humanos , Imunoterapia , Linfócitos T
3.
Nature ; 565(7738): 170-171, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30622348
4.
Proc Natl Acad Sci U S A ; 114(29): 7683-7688, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28674022

RESUMO

Fibrous sheath interacting protein 1 (FSIP1), a spermatogenesis-related testicular antigen, is expressed in abundance in breast cancers, particularly in those overexpressing human epidermal growth factor receptor 2 (HER2); however, little is known about its role in regulating the growth and metastasis of breast cancer cells. We and others have shown previously that FSIP1 expression in breast cancer correlates positively with HER2-positivity, recurrence, and metastases and negatively with survival. Here, using coimmunoprecipitation and microscale thermophoresis, we find that FSIP1 binds to the intracellular domain of HER2 directly. We further show that shRNA-induced FSIP1 knockdown in SKBR3 and MCF-7 breast cancer cells inhibits proliferation, stimulates apoptosis, attenuates epithelial-mesenchymal transition, and impairs migration and invasiveness. Consistent with reduced proliferation and enhanced apoptosis, xenotransplantation of SKBR3 cells stably transfected with sh-FSIP1 into nu/nu mice results in reduced tumor volumes compared with sh-NC transplants. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping using sh-FSIP1 gene signature yielded associations with extracellular matrix protein pathways, and a reduction in SNAI2 protein expression was confirmed on Western blot analysis. Complementarily, interrogation of the Connectivity Map using the same gene signature yielded, as top hits, chemicals known to inhibit epithelial-mesenchymal transition, including rapamycin, 17-N-allylamino-17-demethoxygeldanamycin, and LY294002. These compounds phenocopy the effects of sh-FSIP1 on SKBR3 cell viability. Thus, FSIP1 suppression limits oncogenesis and invasiveness in breast cancer cells and, considering its absence in most other tissues, including normal breast, may become a potential target for breast cancer therapy.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor ErbB-2/metabolismo , Proteínas de Plasma Seminal/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Fatores de Transcrição/metabolismo
5.
Biomacromolecules ; 20(2): 854-870, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30608149

RESUMO

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.


Assuntos
Adjuvantes Imunológicos/química , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ativação Linfocitária , Micelas , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Hidrodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
6.
J Immunol ; 188(3): 1147-55, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22210914

RESUMO

Members of the triggering expressed on myeloid cells (Trem) receptor family fine-tune inflammatory responses. We previously identified one of these receptors, called Treml4, expressed mainly in the spleen, as well as at high levels by CD8α(+) dendritic cells and macrophages. Like other Trem family members, Treml4 has an Ig-like extracellular domain and a short cytoplasmic tail that associates with the adaptor DAP12. To follow up on our initial results that Treml4-Fc fusion proteins bind necrotic cells, we generated a knockout mouse to assess the role of Treml4 in the uptake and presentation of dying cells in vivo. Loss of Treml4 expression did not impair uptake of dying cells by CD8α(+) dendritic cells or cross-presentation of cell-associated Ag to CD8(+) T cells, suggesting overlapping function between Treml4 and other receptors in vivo. To further investigate Treml4 function, we took advantage of a newly generated mAb against Treml4 and engineered its H chain to express three different Ags (i.e., OVA, HIV GAGp24, and the extracellular domain of the breast cancer protein HER2). OVA directed to Treml4 was efficiently presented to CD8(+) and CD4(+) T cells in vivo. Anti-Treml4-GAGp24 mAbs, given along with a maturation stimulus, induced Th1 Ag-specific responses that were not observed in Treml4 knockout mice. Also, HER2 targeting using anti-Treml4 mAbs elicited combined CD4(+) and CD8(+) T cell immunity, and both T cells participated in resistance to a transplantable tumor. Therefore, Treml4 participates in Ag presentation in vivo, and targeting Ags with anti-Treml4 Abs enhances immunization of otherwise naive mice.


Assuntos
Apresentação de Antígeno/imunologia , Receptor ErbB-2/imunologia , Receptores Imunológicos/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Imunidade Celular , Imunização , Camundongos , Camundongos Knockout , Substâncias Protetoras , Engenharia de Proteínas
7.
Cancer Prev Res (Phila) ; 16(9): 483-495, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001882

RESUMO

Cancer immunoprevention applies immunologic approaches such as vaccines to prevent, rather than to treat or cure, cancer. Despite limited success in the treatment of advanced disease, the development of cancer vaccines to intercept premalignant states is a promising area of current research. These efforts are supported by the rationale that vaccination in the premalignant setting is less susceptible to mechanisms of immune evasion compared with established cancer. Prophylactic vaccines have already been developed for a minority of cancers mediated by oncogenic viruses (e.g., hepatitis B and human papillomavirus). Extending the use of preventive vaccines to non-virally driven malignancies remains an unmet need to address the rising global burden of cancer. This review provides a broad overview of clinical trials in cancer immunoprevention with an emphasis on emerging vaccine targets and delivery platforms, translational challenges, and future directions.


Assuntos
Vacinas Anticâncer , Vacinas contra Papillomavirus , Lesões Pré-Cancerosas , Humanos , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias , Imunoterapia , Lesões Pré-Cancerosas/tratamento farmacológico , Vacinação
8.
Cancer Discov ; 13(5): 1053-1057, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37067199

RESUMO

SUMMARY: Convergence science teams integrating clinical, biological, engineering, and computational expertise are inventing new forecast systems to monitor and predict evolutionary changes in tumor and immune interactions during early cancer progression and therapeutic response. The resulting methods should inform a new predictive medicine paradigm to select adaptive immunotherapeutic regimens personalized to patients' tumors at a given time during their cancer progression for durable patient response.


Assuntos
Imunoterapia , Neoplasias , Medicina de Precisão , Humanos , Imunoterapia/métodos , Imunoterapia/tendências , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Resistência a Medicamentos , Microambiente Tumoral
9.
Cell Rep Methods ; 3(10): 100600, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37776855

RESUMO

Assays linking cellular phenotypes with T cell or B cell antigen receptor sequences are crucial for characterizing adaptive immune responses. Existing methodologies are limited by low sample throughput and high cost. Here, we present INtraCEllular Reverse Transcription with Sorting and sequencing (INCERTS), an approach that combines molecular indexing of receptor repertoires within intact cells and fluorescence-activated cell sorting (FACS). We demonstrate that INCERTS enables efficient processing of millions of cells from pooled human peripheral blood mononuclear cell (PBMC) samples while retaining robust association between T cell receptor (TCR) sequences and cellular phenotypes. We used INCERTS to discover antigen-specific TCRs from patients with cancer immunized with a novel mutant KRAS peptide vaccine. After ex vivo stimulation, 28 uniquely barcoded samples were pooled prior to FACS into peptide-reactive and non-reactive CD4+ and CD8+ populations. Combining complementary patient-matched single-cell RNA sequencing (scRNA-seq) data enabled retrieval of full-length, paired TCR alpha and beta chain sequences for future validation of therapeutic utility.


Assuntos
Leucócitos Mononucleares , Transcrição Reversa , Humanos , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética
10.
JCI Insight ; 8(23)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063199

RESUMO

Personalized cancer vaccines aim to activate and expand cytotoxic antitumor CD8+ T cells to recognize and kill tumor cells. However, the role of CD4+ T cell activation in the clinical benefit of these vaccines is not well defined. We previously established a personalized neoantigen vaccine (PancVAX) for the pancreatic cancer cell line Panc02, which activates tumor-specific CD8+ T cells but required combinatorial checkpoint modulators to achieve therapeutic efficacy. To determine the effects of neoantigen-specific CD4+ T cell activation, we generated a vaccine (PancVAX2) targeting both major histocompatibility complex class I- (MHCI-) and MHCII-specific neoantigens. Tumor-bearing mice vaccinated with PancVAX2 had significantly improved control of tumor growth and long-term survival benefit without concurrent administration of checkpoint inhibitors. PancVAX2 significantly enhanced priming and recruitment of neoantigen-specific CD8+ T cells into the tumor with lower PD-1 expression after reactivation compared with the CD8+ vaccine alone. Vaccine-induced neoantigen-specific Th1 CD4+ T cells in the tumor were associated with decreased Tregs. Consistent with this, PancVAX2 was associated with more proimmune myeloid-derived suppressor cells and M1-like macrophages in the tumor, demonstrating a less immunosuppressive tumor microenvironment. This study demonstrates the biological importance of prioritizing and including CD4+ T cell-specific neoantigens for personalized cancer vaccine modalities.


Assuntos
Vacinas Anticâncer , Neoplasias Pancreáticas , Camundongos , Animais , Linfócitos T CD4-Positivos , Antígenos de Neoplasias , Eficácia de Vacinas , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral
11.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37904980

RESUMO

Neoadjuvant immunotherapy is thought to produce long-term remissions through induction of antitumor immune responses before removal of the primary tumor. Tertiary lymphoid structures (TLS), germinal center-like structures that can arise within tumors, may contribute to the establishment of immunological memory in this setting, but understanding of their role remains limited. Here, we investigated the contribution of TLS to antitumor immunity in hepatocellular carcinoma (HCC) treated with neoadjuvant immunotherapy. We found that neoadjuvant immunotherapy induced the formation of TLS, which were associated with superior pathologic response, improved relapse free survival, and expansion of the intratumoral T and B cell repertoire. While TLS in viable tumor displayed a highly active mature morphology, in areas of tumor regression we identified an involuted TLS morphology, which was characterized by dispersion of the B cell follicle and persistence of a T cell zone enriched for ongoing antigen presentation and T cell-mature dendritic cell interactions. Involuted TLS showed increased expression of T cell memory markers and expansion of CD8+ cytotoxic and tissue resident memory clonotypes. Collectively, these data reveal the circumstances of TLS dissolution and suggest a functional role for late-stage TLS as sites of T cell memory formation after elimination of viable tumor.

12.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37745323

RESUMO

Cells are fundamental units of life, constantly interacting and evolving as dynamical systems. While recent spatial multi-omics can quantitate individual cells' characteristics and regulatory programs, forecasting their evolution ultimately requires mathematical modeling. We develop a conceptual framework-a cell behavior hypothesis grammar-that uses natural language statements (cell rules) to create mathematical models. This allows us to systematically integrate biological knowledge and multi-omics data to make them computable. We can then perform virtual "thought experiments" that challenge and extend our understanding of multicellular systems, and ultimately generate new testable hypotheses. In this paper, we motivate and describe the grammar, provide a reference implementation, and demonstrate its potential through a series of examples in tumor biology and immunotherapy. Altogether, this approach provides a bridge between biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.

13.
Breast Cancer Res ; 14(2): R39, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22397502

RESUMO

INTRODUCTION: Given their relative simplicity of manufacture and ability to be injected repeatedly, vaccines in a protein format are attractive for breast and other cancers. However, soluble human epidermal growth factor receptor (HER2)/neu protein as a vaccine has not been immunogenic. When protein is directly targeted to antigen uptake receptors, such as DEC205 (DEC), efficient processing and presentation of antigen take place. The aim of this study was to determine the immunogenicity of a HER2 protein vaccine that directly targets to DEC+ dendritic cells (DCs) in a mouse breast cancer model. METHODS: We genetically engineered the HER2 extracellular domain into a monoclonal antibody specific for DEC (DEC-HER2). Mice of various genetic backgrounds were immunized with DEC-HER2 in combination with DC maturation stimuli (poly IC ± CD40 Ab). Vaccine-induced T cell immunity was determined by analyzing the ability of CD4+/CD8+ T cell to produce interferon (IFN)-gamma and proliferate upon antigen rechallenge. Sera were assessed for the presence of antigen specific antibody (Ab). For vaccine efficacy, FVB/N mice were immunized with DEC-HER2 in combination with poly IC and protection against neu-expressing mammary tumors was assessed. Protection mechanisms and tumor-specific T cell responses were also evaluated. RESULTS: We demonstrate that DEC-HER2 fusion mAb, but not Ctrl Ig-HER2, elicits strong, broad and multifunctional CD4+ T cell immunity, CD8+ T cell responses, and humoral immunity specific for HER2 antigen. Cross-reactivity to rat neu protein was also observed. Importantly, mice xeno-primed with DEC-HER2 were protected from a neu-expressing mammary tumor challenge. Both CD4+ and CD8+ T cells mediated the tumor protection. Robust anti-tumor T cell immunity was detected in tumor protected mice. CONCLUSIONS: Immunization of mice with HER2 protein vaccine targeting DEC+ DCs in vivo induced high levels of T- and B-cell immunity. Non-targeted HER2 protein was poorly immunogenic for CD4+ and CD8+ T cells. This vaccination approach provided long-term survival benefit for mice challenged with neu-expressing tumor following as little as 2.7 µg of HER2 protein incorporated in the vaccine. Vaccine-induced CD4+ and CD8+ T cells were both essential for tumor protection. This immunization strategy demonstrates great potential towards the development of vaccines for breast cancer patients.


Assuntos
Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Receptor ErbB-2/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/genética , Linhagem Celular Tumoral , Feminino , Humanos , Imunidade Humoral , Interferon gama/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Poli I-C/imunologia , Poli I-C/farmacologia , Estrutura Terciária de Proteína/genética , Receptor ErbB-2/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia
14.
J Clin Invest ; 132(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289317

RESUMO

The COVID-19 pandemic has elevated mRNA vaccines to global recognition due to their unprecedented success rate in protecting against a deadly virus. This international success is underscored by the remarkable versatility, favorable immunogenicity, and overall safety of the mRNA platform in diverse populations. Although mRNA vaccines have been studied in preclinical models and patients with cancer for almost three decades, development has been slow. The recent technological advances responsible for the COVID-19 vaccines have potential implications for successfully adapting this vaccine platform for cancer therapeutics. Here we discuss the lessons learned along with the chemical, biologic, and immunologic adaptations needed to optimize mRNA technology to successfully treat cancers.


Assuntos
COVID-19 , Neoplasias , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Pandemias/prevenção & controle , Vacinas de mRNA
15.
Cancer Inform ; 21: 11769351221136081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439024

RESUMO

Tumor mutational burden (TMB), a surrogate for tumor neoepitope burden, is used as a pan-tumor biomarker to identify patients who may benefit from anti-program cell death 1 (PD1) immunotherapy, but it is an imperfect biomarker. Multiple additional genomic characteristics are associated with anti-PD1 responses, but the combined predictive value of these features and the added informativeness of each respective feature remains unknown. We evaluated whether machine learning (ML) approaches using proposed determinants of anti-PD1 response derived from whole exome sequencing (WES) could improve prediction of anti-PD1 responders over TMB alone. Random forest classifiers were trained on publicly available anti-PD1 data (n = 104), and subsequently tested on an independent anti-PD1 cohort (n = 69). Both the training and test datasets included a range of cancer types such as non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC), melanoma, and smaller numbers of patients from other tumor types. Features used include summaries such as TMB and number of frameshift mutations, as well as more gene-level features such as counts of mutations associated with immune checkpoint response and resistance. Both ML algorithms demonstrated area under the receiver-operator curves (AUC) that exceeded TMB alone (AUC 0.63 "human-guided," 0.64 "cluster," and 0.58 TMB alone). Mutations within oncogenes disproportionately modulate anti-PD1 responses relative to their overall contribution to tumor neoepitope burden. The use of a ML algorithm evaluating multiple proposed genomic determinants of anti-PD1 responses modestly improves performance over TMB alone, highlighting the need to integrate other biomarkers to further improve model performance.

16.
Cancer Cell ; 40(6): 559-564, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35700704

RESUMO

Given the renewed interest in vaccine development sparked by the COVID-19 pandemic, we are revisiting the current state of vaccine development for cancer prevention and treatment. Experts discuss different vaccine types, their antigens and modes of action, and where we stand on their clinical development, plus the challenges we need to overcome for their broad implementation.


Assuntos
COVID-19 , Vacinas Anticâncer , Neoplasias , COVID-19/prevenção & controle , Vacinas Anticâncer/uso terapêutico , Humanos , Neoplasias/prevenção & controle , Pandemias/prevenção & controle
17.
Elife ; 112022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125123

RESUMO

Pharmacological and genetic studies over the past decade have established the follicle-stimulating hormone (FSH) as an actionable target for diseases affecting millions, namely osteoporosis, obesity, and Alzheimer's disease. Blocking FSH action prevents bone loss, fat gain, and neurodegeneration in mice. We recently developed a first-in-class, humanized, epitope-specific FSH-blocking antibody, MS-Hu6, with a KD of 7.52 nM. Using a Good Laboratory Practice (GLP)-compliant platform, we now report the efficacy of MS-Hu6 in preventing and treating osteoporosis in mice and parameters of acute safety in monkeys. Biodistribution studies using 89Zr-labeled, biotinylated or unconjugated MS-Hu6 in mice and monkeys showed localization to bone and bone marrow. The MS-Hu6 displayed a ß phase t½ of 7.5 days (180 hr) in humanized Tg32 mice. We tested 217 variations of excipients using the protein thermal shift assay to generate a final formulation that rendered MS-Hu6 stable in solution upon freeze-thaw and at different temperatures, with minimal aggregation, and without self-, cross-, or hydrophobic interactions or appreciable binding to relevant human antigens. The MS-Hu6 showed the same level of "humanness" as human IgG1 in silico and was non-immunogenic in ELISpot assays for IL-2 and IFN-γ in human peripheral blood mononuclear cell cultures. We conclude that MS-Hu6 is efficacious, durable, and manufacturable, and is therefore poised for future human testing.


Assuntos
Hormônio Foliculoestimulante , Osteoporose , Animais , Epitopos/metabolismo , Excipientes , Hormônio Foliculoestimulante/metabolismo , Humanos , Imunoglobulina G/metabolismo , Interleucina-2/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Osteoporose/tratamento farmacológico , Distribuição Tecidual
18.
Genome Med ; 13(1): 129, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34376232

RESUMO

BACKGROUND: Tumor response to therapy is affected by both the cell types and the cell states present in the tumor microenvironment. This is true for many cancer treatments, including immune checkpoint inhibitors (ICIs). While it is well-established that ICIs promote T cell activation, their broader impact on other intratumoral immune cells is unclear; this information is needed to identify new mechanisms of action and improve ICI efficacy. Many preclinical studies have begun using single-cell analysis to delineate therapeutic responses in individual immune cell types within tumors. One major limitation to this approach is that therapeutic mechanisms identified in preclinical models have failed to fully translate to human disease, restraining efforts to improve ICI efficacy in translational research. METHOD: We previously developed a computational transfer learning approach called projectR to identify shared biology between independent high-throughput single-cell RNA-sequencing (scRNA-seq) datasets. In the present study, we test this algorithm's ability to identify conserved and clinically relevant transcriptional changes in complex tumor scRNA-seq data and expand its application to the comparison of scRNA-seq datasets with additional data types such as bulk RNA-seq and mass cytometry. RESULTS: We found a conserved signature of NK cell activation in anti-CTLA-4 responsive mouse and human tumors. In human metastatic melanoma, we found that the NK cell activation signature associates with longer overall survival and is predictive of anti-CTLA-4 (ipilimumab) response. Additional molecular approaches to confirm the computational findings demonstrated that human NK cells express CTLA-4 and bind anti-CTLA-4 antibodies independent of the antibody binding receptor (FcR) and that similar to T cells, CTLA-4 expression by NK cells is modified by cytokine-mediated and target cell-mediated NK cell activation. CONCLUSIONS: These data demonstrate a novel application of our transfer learning approach, which was able to identify cell state transitions conserved in preclinical models and human tumors. This approach can be adapted to explore many questions in cancer therapeutics, enhance translational research, and enable better understanding and treatment of disease.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/genética , Modelos Biológicos , Neoplasias/genética , Transcriptoma , Animais , Biomarcadores , Linhagem Celular Tumoral , Biologia Computacional/métodos , Bases de Dados Genéticas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Curva ROC , Resultado do Tratamento
19.
J Clin Invest ; 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34283806

RESUMO

Both epidemiologic and cellular studies in the context of autoimmune diseases have established that protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a key regulator of T cell receptor (TCR) signaling. However, its mechanism of action in tumors and its translatability as a target for cancer immunotherapy have not been established. Here we show that a germline variant of PTPN22, rs2476601, portended a lower likelihood of cancer in patients. PTPN22 expression was also associated with markers of immune regulation in multiple cancer types. In mice, lack of PTPN22 augmented antitumor activity with greater infiltration and activation of macrophages, natural killer (NK) cells, and T cells. Notably, we generated a novel small molecule inhibitor of PTPN22, named L-1, that phenocopied the antitumor effects seen in genotypic PTPN22 knockout. PTPN22 inhibition promoted activation of CD8+ T cells and macrophage subpopulations toward MHC-II expressing M1-like phenotypes, both of which were necessary for successful antitumor efficacy. Increased PD1-PDL1 axis in the setting of PTPN22 inhibition could be further leveraged with PD1 inhibition to augment antitumor effects. Similarly, cancer patients with the rs2476601 variant responded significantly better to checkpoint inhibitor immunotherapy. Our findings suggest that PTPN22 is a druggable systemic target for cancer immunotherapy.

20.
Cell Rep ; 36(8): 109599, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433020

RESUMO

Both tumors and aging alter the immune landscape of tissues. These interactions may play an important role in tumor progression among elderly patients and may suggest considerations for patient care. We leverage large-scale genomic and clinical databases to perform comprehensive comparative analysis of molecular and cellular markers of immune checkpoint blockade (ICB) response with patient age. These analyses demonstrate that aging is associated with increased tumor mutational burden, increased expression and decreased promoter methylation of immune checkpoint genes, and increased interferon gamma signaling in older patients in many cancer types studied, all of which are expected to promote ICB efficacy. Concurrently, we observe age-related alterations that might be expected to reduce ICB efficacy, such as decreases in T cell receptor diversity. Altogether, these changes suggest the capacity for robust ICB response in many older patients, which may warrant large-scale prospective study on ICB therapies among patients of advanced age.


Assuntos
Fatores Etários , Antígeno B7-H1/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/isolamento & purificação , Neoplasias/tratamento farmacológico , Antígeno B7-H1/genética , Genômica , Humanos , Imunoterapia/métodos , Neoplasias/genética , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA