Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 189(8): 1526-1535, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108101

RESUMO

Neutrophil elastase (NE) is necessary for effective sterilization of phagocytosed bacterial and fungal pathogens; however, NE increases alveolocapillary permeability and induces proinflammatory cytokine production in sepsis-induced acute respiratory distress syndrome. Under septic conditions, the pulmonary endothelial glycocalyx covering on the healthy endothelium surface is injured, but the contribution of NE to this injury remains unknown. Our aim was to examine whether NE-induced pulmonary endothelial injury is associated with endotoxemia. Lipopolysaccharide (LPS; 20 mg/kg) was injected intraperitoneally into 9- to 12-week-old granulocyte colony-stimulating factor knockout (G-CSFKO) mice, which harbor few neutrophils, and littermate control mice; in a second assay, mice were injected with the NE-inhibitor sivelestat (0.2 mg/kg) at 3, 6, 9, and 12 hours after LPS administration. Subsequently, vascular endothelial injury was evaluated through ultrastructural analysis. At 48 hours after LPS injection, survival rate was more than threefold higher among G-CSFKO than control mice, and degradation of both thrombomodulin and syndecan-1 was markedly attenuated in G-CSFKO compared with control mice. Ultrastructural analysis revealed attenuated vascular endothelial injury and clear preservation of the endothelial glycocalyx in G-CSFKO mice. Moreover, after LPS exposure, survival rate was approximately ninefold higher among sivelestat-injected mice than control mice, and sivelestat treatment potently preserved vascular endothelial structures and the endothelial glycocalyx. In conclusion, NE is associated with pulmonary endothelial injury under LPS-induced endotoxemic conditions.


Assuntos
Endotélio/enzimologia , Endotoxemia/metabolismo , Glicocálix/enzimologia , Elastase de Leucócito/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/enzimologia , Animais , Endotélio/patologia , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/patologia , Glicina/análogos & derivados , Glicina/farmacologia , Glicocálix/genética , Glicocálix/patologia , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/genética , Pulmão/patologia , Camundongos , Camundongos Knockout , Sulfonamidas/farmacologia
2.
Crit Care ; 21(1): 261, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058634

RESUMO

BACKGROUND: Sugar-protein glycocalyx coats healthy endothelium, but its ultrastructure is not well described. Our aim was to determine the three-dimensional ultrastructure of capillary endothelial glycocalyx in the heart, kidney, and liver, where capillaries are, respectively, continuous, fenestrated, and sinusoidal. METHODS: Tissue samples were processed with lanthanum-containing alkaline fixative, which preserves the structure of glycocalyx. RESULTS: Scanning and transmission electron microscopy revealed that the endothelial glycocalyx layer in continuous and fenestrated capillaries was substantially thicker than in sinusoids. In the heart, the endothelial glycocalyx presented as moss- or broccoli-like and covered the entire luminal endothelial cell surface. In the kidney, the glycocalyx appeared to nearly occlude the endothelial pores of the fenestrated capillaries and was also present on the surface of the renal podocytes. In sinusoids of the liver, glycocalyx covered not only the luminal side but also the opposite side, facing the space of Disse. In a mouse lipopolysaccharide-induced experimental endotoxemia model, the capillary endothelial glycocalyx was severely disrupted; that is, it appeared to be peeling off the cells and clumping. Serum concentrations of syndecan-1, a marker of glycocalyx damage, were significantly increased 24 h after administration of lipopolysaccharide. CONCLUSIONS: In the present study, we visualized the three-dimensional ultrastructure of endothelial glycocalyx in healthy continuous, fenestrated, and sinusoidal capillaries, and we also showed their disruption under experimental endotoxemic conditions. The latter may provide a morphological basis for the microvascular endothelial dysfunction associated with septic injury to organs.


Assuntos
Endotélio Vascular/anatomia & histologia , Glicocálix/patologia , Animais , Endotélio Vascular/microbiologia , Glicocálix/metabolismo , Glicocálix/fisiologia , Coração/anatomia & histologia , Estimativa de Kaplan-Meier , Rim/anatomia & histologia , Rim/irrigação sanguínea , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/metabolismo , Fígado/anatomia & histologia , Fígado/irrigação sanguínea , Camundongos/anatomia & histologia , Camundongos/microbiologia , Microscopia Eletrônica/métodos , Modelos de Riscos Proporcionais
3.
Br J Pharmacol ; 177(17): 4021-4033, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32497259

RESUMO

BACKGROUND AND PURPOSE: Disruption of the endothelial glycocalyx is causally related to microvascular endothelial dysfunction, a characteristic of sepsis-induced acute respiratory distress syndrome (ARDS). Recombinant human thrombomodulin (rhTM) attenuates vascular endothelial injuries, but the underlying mechanism remains elusive. Here, we investigated the structural basis and molecular mechanisms of rhTM effects on vascular endothelial injury in a model of sepsis. EXPERIMENTAL APPROACH: LPS (20 mg·kg-1 ) was intraperitoneally injected into 10-week-old male C57BL6 mice, and saline or rhTM was intraperitoneally injected 3 and 24 h after LPS injection. Using serum and/or lung tissue, histological, ultrastructural, and microarray analyses were performed. KEY RESULTS: Survival rate of rhTM-treated mice was significantly higher than that of control mice 48 h after LPS injection. Serum concentrations of IL-6 and high-mobility group box 1 were lower in the rhTM-treated group than in the control. Injury to the endothelial glycocalyx in pulmonary capillaries was attenuated by rhTM treatment. Gene set enrichment analysis revealed up-regulation of gene sets corresponding to cell proliferation/differentiation and anti-inflammation, such as the TGF-ß pathway, and negative regulation of IL-6, upon rhTM treatment. Gene expression of heparan sulfate 6-O-sulfotransferase 1 and endothelial cell-specific molecule 1 (components of the endothelial glycocalyx) was significantly preserved by rhTM treatment, and their protein expression levels were maintained in endothelial cells. CONCLUSION AND IMPLICATIONS: Our findings show that rhTM treatment affected inflammation, cell proliferation/differentiation, and glycocalyx synthesis in serum and lung tissue, subsequently attenuating ARDS caused by endothelial injury.


Assuntos
Glicocálix , Síndrome do Desconforto Respiratório , Animais , Células Endoteliais , Lipopolissacarídeos/toxicidade , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico , Trombomodulina
4.
Shock ; 54(3): 386-393, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31764619

RESUMO

Myocardial injury in sepsis may be caused by a burst of several inflammatory mediators, leading to vascular endothelial injuries. However, the contribution of neutrophil elastase (NE) to myocardial injury in sepsis is still unknown. We aimed to evaluate whether endotoxemia-induced myocardial injury is associated with NE. Lipopolysaccharide (LPS) was injected intraperitoneally at a dose of 20 mg/kg into granulocyte-colony-stimulating-factor knockout mice (G-CSF-KO), which have few neutrophils, and littermate control mice. The survival rate of G-CSF-KO mice 48 hours after LPS injection was significantly greater than that of control mice. The serum level of troponin I in G-CSF-KO mice was significantly lower than that in control mice. In addition, the concentration of inflammatory cytokine interleukin-6 (IL-6) was significantly decreased 6 and 12 hours after LPS administration compared with that in control mice. Ultrastructural analysis revealed that vascular endothelial structures and the endothelial glycocalyx in G-CSF-KO mice were clearly preserved. Next, mice were injected with 0.2 mg/kg sivelestat (an NE inhibitor) after LPS administration. The survival rate was significantly higher and the serum level of troponin I was lower in sivelestat-injected mice than in control mice, respectively. Furthermore, IL-6 levels were significantly decreased 6 and 12 hours after LPS administration compared with those in control mice. Vascular endothelial structures and the endothelial glycocalyx in sivelestat-treated mice were clearly preserved at the ultrastructural level. In conclusion, NE is significantly associated with myocardial injury in endotoxemia. Inhibition of NE may be a useful tool for the management of endotoxemia.


Assuntos
Endotoxemia/tratamento farmacológico , Glicocálix/metabolismo , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/metabolismo , Animais , Endotoxemia/sangue , Endotoxinas/toxicidade , Glicina/análogos & derivados , Glicina/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/deficiência , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Interleucina-6/sangue , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Sulfonamidas/uso terapêutico , Troponina I/sangue
5.
J Clin Med ; 8(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31462009

RESUMO

Endothelial disorders are related to various diseases. An initial endothelial injury is characterized by endothelial glycocalyx injury. We aimed to evaluate endothelial glycocalyx injury by measuring serum syndecan-1 concentrations in patients during comprehensive medical examinations. A single-center, prospective, observational study was conducted at Asahi University Hospital. The participants enrolled in this study were 1313 patients who underwent comprehensive medical examinations at Asahi University Hospital from January 2018 to June 2018. One patient undergoing hemodialysis was excluded from the study. At enrollment, blood samples were obtained, and study personnel collected demographic and clinical data. No treatments or exposures were conducted except for standard medical examinations and blood sample collection. Laboratory data were obtained by the collection of blood samples at the time of study enrolment. According to nonlinear regression, the concentrations of serum syndecan-1 were significantly related to age (p = 0.016), aspartic aminotransferase concentration (AST, p = 0.020), blood urea nitrogen concentration (BUN, p = 0.013), triglyceride concentration (p < 0.001), and hematocrit (p = 0.006). These relationships were independent associations. Endothelial glycocalyx injury, which is reflected by serum syndecan-1 concentrations, is related to age, hematocrit, AST concentration, BUN concentration, and triglyceride concentration.

6.
Sci Rep ; 8(1): 17523, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504908

RESUMO

Endothelial glycocalyx coats healthy vascular endothelium and plays an important role in vascular homeostasis. Although cerebral capillaries are categorized as continuous, as are those in the heart and lung, they likely have specific features related to their function in the blood brain barrier. To test that idea, brains, hearts and lungs from C57BL6 mice were processed with lanthanum-containing alkaline fixative, which preserves the structure of glycocalyx, and examined using scanning and transmission electron microscopy. We found that endothelial glycocalyx is present over the entire luminal surface of cerebral capillaries. The percent area physically covered by glycocalyx within the lumen of cerebral capillaries was 40.1 ± 4.5%, which is significantly more than in cardiac and pulmonary capillaries (15.1 ± 3.7% and 3.7 ± 0.3%, respectively). Upon lipopolysaccharide-induced vascular injury, the endothelial glycocalyx was reduced within cerebral capillaries, but substantial amounts remained. By contrast, cardiac and pulmonary capillaries became nearly devoid of glycocalyx. These findings suggest the denser structure of glycocalyx in the brain is associated with endothelial protection and may be an important component of the blood brain barrier.


Assuntos
Barreira Hematoencefálica , Encéfalo/ultraestrutura , Capilares/ultraestrutura , Glicocálix/ultraestrutura , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Capilares/metabolismo , Permeabilidade Capilar , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
7.
Chest ; 154(2): 317-325, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29555594

RESUMO

BACKGROUND: The most recent diagnostic criteria for sepsis include organ failure. Microvascular endothelial injury is believed to lead to the multiple organ failure seen in sepsis, although the precise mechanism is still controversial. ARDS is the primary complication during the sequential development of multiple organ dysfunction in sepsis, and endothelial injury is deeply involved. Sugar-protein glycocalyx coats all healthy vascular endothelium, and its disruption is one factor believed to contribute to microvascular endothelial dysfunction during sepsis. The goal of this study was to observe the three-dimensional ultrastructural alterations in the pulmonary capillary endothelium, including the glycocalyx, during sepsis-induced pulmonary vasculitis. METHODS: This study investigated the three-dimensional ultrastructure of pulmonary vascular endothelial glycocalyx in a mouse lipopolysaccharide-induced endotoxemia model. Lungs were fixed with lanthanum-containing alkaline fixative to preserve the glycocalyx. RESULTS: On both scanning and transmission electron microscopic imaging, the capillary endothelial glycocalyx appeared as a moss-like structure entirely covering the endothelial cell surface in normal mice. In the septic lung following liposaccharide injection, however, this structure was severely disrupted; it appeared to be peeling away and coagulated. In addition, syndecan-1 levels were significantly reduced in the septic lung, and numerous spherical structures containing glycocalyx were observed on the endothelial surface. CONCLUSIONS: It appears that endothelial glycocalyx in the lung is markedly disrupted under experimental endotoxemia conditions. This finding supports the notion that disruption of the glycocalyx is causally related to the microvascular endothelial dysfunction that is characteristic of sepsis-induced ARDS.


Assuntos
Endotélio Vascular/ultraestrutura , Endotoxemia/patologia , Glicocálix/ultraestrutura , Pulmão/irrigação sanguínea , Animais , Western Blotting , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA