Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nat Immunol ; 25(7): 1270-1282, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877178

RESUMO

The relative and synergistic contributions of genetics and environment to interindividual immune response variation remain unclear, despite implications in evolutionary biology and medicine. Here we quantify interactive effects of genotype and environment on immune traits by investigating C57BL/6, 129S1 and PWK/PhJ inbred mice, rewilded in an outdoor enclosure and infected with the parasite Trichuris muris. Whereas cellular composition was shaped by interactions between genotype and environment, cytokine response heterogeneity including IFNγ concentrations was primarily driven by genotype with consequence on worm burden. In addition, we show that other traits, such as expression of CD44, were explained mostly by genetics on T cells, whereas expression of CD44 on B cells was explained more by environment across all strains. Notably, genetic differences under laboratory conditions were decreased following rewilding. These results indicate that nonheritable influences interact with genetic factors to shape immune variation and parasite burden.


Assuntos
Interação Gene-Ambiente , Camundongos Endogâmicos C57BL , Tricuríase , Trichuris , Animais , Trichuris/imunologia , Tricuríase/imunologia , Tricuríase/parasitologia , Camundongos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Linfócitos B/imunologia , Genótipo , Interferon gama/metabolismo , Linfócitos T/imunologia , Feminino , Masculino
2.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106171

RESUMO

Plasma cells (PCs) are essential for humoral immunity, as they are responsible for the production of antibodies and contribute to immunological memory. Despite their importance, differentiating between long-lived and short-lived PCs in vivo remains a challenge due to a lack of specific markers to distinguish these populations. Addressing this gap, our study introduces a novel J-chain CreERT2 GFP allele (IgJCreERT2) for precise genetic studies of PCs. This model takes advantage of PC-restricted expression of the J-chain gene, enabling temporal and cell-specific tracking of PCs utilizing a tamoxifen-inducible Cre recombinase. Our in vitro and in vivo validation studies of the inducible Cre allele confirmed the fidelity and utility of this model and demonstrated the model's ability to trace the long-lived PC population in vivo following immunization. The IgJCreERT2 model allowed for detailed analysis of surface marker expression on PCs, revealing insights into PC heterogeneity and characteristics. Our findings not only validate the IgJCreERT2 mouse as a reliable tool for studying PCs but also facilitate the investigation of PC dynamics and longevity, particularly in the context of humoral immunity and vaccine responses. This model represents a significant advancement for the in-depth study of PCs in health and disease, offering a new avenue for the exploration of PC biology and immunological memory.

3.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36993484

RESUMO

The relative and synergistic contributions of genetics and environment to inter-individual immune response variation remain unclear, despite its implications for understanding both evolutionary biology and medicine. Here, we quantify interactive effects of genotype and environment on immune traits by investigating three inbred mouse strains rewilded in an outdoor enclosure and infected with the parasite, Trichuris muris. Whereas cytokine response heterogeneity was primarily driven by genotype, cellular composition heterogeneity was shaped by interactions between genotype and environment. Notably, genetic differences under laboratory conditions can be decreased following rewilding, and variation in T cell markers are more driven by genetics, whereas B cell markers are driven more by environment. Importantly, variation in worm burden is associated with measures of immune variation, as well as genetics and environment. These results indicate that nonheritable influences interact with genetic factors to shape immune variation, with synergistic impacts on the deployment and evolution of defense mechanisms.

4.
Sci Adv ; 9(51): eadh8310, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134275

RESUMO

Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes. We found extensive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we found that the more associated two individuals were, the more similar their immune phenotypes were. Spatiotemporal association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or shared infection status. These results highlight the importance of shared spatiotemporal activity patterns and/or social networks for immune phenotype and suggest potential immunological correlates of social life.


Assuntos
Sistema Imunitário , Comportamento Social , Camundongos , Animais , Fenótipo
5.
Sci Immunol ; 8(84): eadd6910, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37352372

RESUMO

The paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity. Fungal colonization after either rewilding or oral inoculation of laboratory mice with Candida albicans induced persistent expansion of myeloid progenitors in the bone marrow. This increase in granulopoiesis conferred greater long-term protection from bloodstream infection by gram-positive bacteria than by the trained immune response evoked by transient exposure to the fungal cell wall component ß-glucan. Consequently, introducing fungi into laboratory mice may restore aspects of leukocyte development and provide a better model for humans and free-living mammals that are constantly exposed to environmental fungi.


Assuntos
Granulócitos , Hematopoese , Camundongos , Humanos , Animais , Neutrófilos , Candida albicans , Medula Óssea , Mamíferos
6.
J Cell Biol ; 220(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33620383

RESUMO

Chromosomal instability (CIN) is a hallmark of many cancers. Restricting the localization of centromeric histone H3 variant CENP-A to centromeres prevents CIN. CENP-A overexpression (OE) and mislocalization have been observed in cancers and correlate with poor prognosis; however, the molecular consequences of CENP-A OE on CIN and aneuploidy have not been defined. Here, we show that CENP-A OE leads to its mislocalization and CIN with lagging chromosomes and micronuclei in pseudodiploid DLD1 cells and xenograft mouse model. CIN is due to reduced localization of proteins to the kinetochore, resulting in defects in kinetochore integrity and unstable kinetochore-microtubule attachments. CENP-A OE contributes to reduced expression of cell adhesion genes and higher invasion of DLD1 cells. We show that CENP-A OE contributes to aneuploidy with karyotypic heterogeneity in human cells and xenograft mouse model. In summary, our results provide a molecular link between CENP-A OE and aneuploidy, and suggest that karyotypic heterogeneity may contribute to the aggressive phenotype of CENP-A-overexpressing cancers.


Assuntos
Aneuploidia , Proteína Centromérica A/biossíntese , Instabilidade Cromossômica , Cinetocoros/metabolismo , Micronúcleos com Defeito Cromossômico , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Proteína Centromérica A/genética , Xenoenxertos , Humanos , Cinetocoros/patologia , Camundongos , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA