Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Pak J Pharm Sci ; 33(4(Supplementary)): 1795-1803, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33612463

RESUMO

The aging process is concerned with oxidative stress and causing malfunction of various organs such as the liver, kidney and heart. Lithium (Li) salts have shown anti-manic, anti-suicidal, and antioxidant properties. The current study is aimed to evaluate the possible inhibitory effects of various doses (10, 20 & 40mg/ml/kg) of Lithium chloride (LiCl) on D-galactose (D-gal)-produced aging model and explore the underlying mechanism. In the study 40 male rats were randomly alienated into 8 groups i.e. saline, LiCl (10, 20 & 40mg/ml/kg), D-gal and D-gal+LiCl (10, 20 & 40 mg/ml/kg). D-gal was given at a dosage of 300mg/ml/kg$ and animals received their respective treatment for 6 weeks [intraperitoneally (I.P), once daily]. After 2 weeks animals were decapitated and organs (liver, kidney, and heart) were removed for antioxidant assays. Blood was also collected for biochemical parameters. LiCl substantially decreased oxidative strain marker and increased enzymatic antioxidants in the liver, kidney, and heart of D-gal treated rats. LiCl also decreased serum alanine aminotransferase (ALT), aspartate transaminase (AST), creatine, urea, CK-MB, triglyceride, cholesterol, low-density lipoprotein (LDL) and increased high-density lipoprotein (HDL) in D-gal treated animals. High dose (80mg/ml/kg) of LiCl observed as the most effective dose against D-gal induced alterations. These finding LiCl inhibits D-gal induced liver, kidney and heart damages via its antioxidant potential.


Assuntos
Estruturas Animais/efeitos dos fármacos , Antioxidantes/farmacologia , Galactose/farmacologia , Cloreto de Lítio/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Alanina Transaminase/metabolismo , Estruturas Animais/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
2.
Pak J Pharm Sci ; 30(3(Suppl.)): 989-995, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28655697

RESUMO

The present study was aimed to investigate the anti-stress and memory enhancing effects of banana (Musa sapientum L.) fruit pulp and peel extract in male mice. Locally bred albino Wistar mice were divided into control and 2 test groups (n=10). Control rats received drinking water while test groups were treated with banana fruit pulp (600 mg/kg; oral administration) and extract of banana peel (400mg/kg; oral administration). Behavioral activities of animals were monitored 14 days post administration of banana pulp and peel extract. Depression-like symptoms were measured by forced swimming test (FST). Anxiety like behavior was monitored using light-dark activity (LDA) test and plus maze activity (PMA) test and memory functions of rats were assessed by morris water maze (MWM) test. Following 2 weeks animals were decapitated and brain was removed for estimation of antioxidant enzymes such as catalase (CAT), super oxide dismutase (SOD) and reduced glutathione (GSH). In the present study both banana peel and pulp increased the time spent in light box and open arm, suggesting anxiolytic effects. A significant decrease in immobility time was observed in FST in both banana pulp and peel treated animals suggesting antidepressant like effects. Moreover, learning and memory assessed by MWM showed decrease in time to reach platform in both short term and long term memory test suggested increased memory function in both banana pulp and peel treated animals as compared to control animals. The activities of all antioxidant enzymes were significantly (p<0.05) greater in banana pulp and peel treated animals than control. It is concluded that both banana pulp and peel have anti-anxiety, antidepressant effect as well as strengthen the memory possibly via its antioxidant mechanism. Therefore, it is recommended that supplementation of banana could be taken a vital role in stress (anxiety and depression) relief and increased in memory function possibly by phyto-antioxidants.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Antioxidantes/farmacologia , Frutas/química , Memória/efeitos dos fármacos , Musa/química , Extratos Vegetais/farmacologia , Animais , Ansiolíticos/isolamento & purificação , Antidepressivos/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Ansiedade/prevenção & controle , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Depressão/prevenção & controle , Depressão/psicologia , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Extratos Vegetais/isolamento & purificação , Natação
3.
Pak J Pharm Sci ; 30(4(Suppl.)): 1431-1438, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29043993

RESUMO

Obesity is an important risk factor for sleep disorders. This study aimed to evaluate the association of leptin, zinc and tryptophan (TRP) in obese subjects with sleep deficits [sleep apnea (SA), insomnia (IN)]. In this cross sectional case control, with the verbal and written consent 206, obese with sleep deficits and 30, non-obese/normal identified from various areas of Karachi, Pakistan. The socio-demographic data including; age, body mass index (BMI), education and residence, of participants was collected. After providing informed consent, fasting blood samples were taken and serum was collected. The serum concentration of leptin, zinc and TRP were analyzed by ELISA (Enzyme-linked immunosorbent assay), FAAS (Flame atomic absorption spectrophotometer) and HPLC (High performance liquid chromatography) respectively. A significant correlation was found between BMI (body mass index) and leptin, BMI and zinc, BMI and TRP. The correlation between leptin consecutively was significantly associated with zinc and TRP in obese patients. Sleep deficits elevated circulatory levels of leptin while lower zinc and TRP levels compared to levels seen in non-obese (Normal) subjects with no sleep deficits. Obese subjects exhibited significantly higher levels of leptin with sleep deficits compared with non-obese subjects with normal sleep pattern, while obese subjects with SA had significantly high levels of leptin than obese subjects with IN and IN+SA. Patients with sleep deficits had significantly lower levels of serum TRP and zinc than non-obese subjects with normal sleep pattern. Obese subjects with SA had significantly lower levels of zinc and elevated levels of TRP than obese subjects with IN. Obese patients with IN+SA had significantly lower levels of leptin and zinc than IN and SA , while TRP levels were significantly lower in subjects with IN than obese subjects with IN+SA and IN. These results suggest that elevated levels of leptin which are possibly by adiposity and lessened levels of zinc and TRP have a great impact on progression of obesity and their association can contribute to tempt sleep disorders.


Assuntos
Leptina/sangue , Obesidade/sangue , Síndromes da Apneia do Sono/sangue , Distúrbios do Início e da Manutenção do Sono/sangue , Sono , Triptofano/sangue , Zinco/sangue , Adiposidade , Adulto , Biomarcadores/sangue , Índice de Massa Corporal , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Obesidade/complicações , Obesidade/diagnóstico , Prognóstico , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/etiologia , Síndromes da Apneia do Sono/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/diagnóstico , Distúrbios do Início e da Manutenção do Sono/etiologia , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Adulto Jovem
4.
Int Immunopharmacol ; 132: 111952, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38555818

RESUMO

Yersinia pestis, the causative agent of plague, is a gram-negative bacterium that can be fatal if not treated properly. Three types of plague are currently known: bubonic, septicemic, and pneumonic plague, among which the fatality rate of septicemic and pneumonic plague is very high. Bubonic plague can be treated, but only if antibiotics are used at the initial stage of the infection. But unfortunately, Y. pestis has also shown resistance to certain antibiotics such as kanamycin, minocycline, tetracycline, streptomycin, sulfonamides, spectinomycin, and chloramphenicol. Despite tremendous progress in vaccine development against Y. pestis, there is no proper FDA-approved vaccine available to protect people from its infections. Therefore, effective broad-spectrum vaccine development against Y. pestis is indispensable. In this study, vaccinomics-assisted immunoinformatics techniques were used to find possible vaccine candidates by utilizing the core proteome prepared from 58 complete genomes of Y. pestis. Human non-homologous, pathogen-essential, virulent, and extracellular and membrane proteins are potential vaccine targets. Two antigenic proteins were prioritized for the prediction of lead epitopes by utilizing reverse vaccinology approaches. Four vaccine designs were formulated using the selected B- and T-cell epitopes coupled with appropriate linkers and adjuvant sequences capable of inducing potent immune responses. The HLA allele population coverage of the T-cell epitopes selected for vaccine construction was also analyzed. The V2 constructs were top-ranked and selected for further analysis on the basis of immunological, physicochemical, and immune-receptor docking interactions and scores. Docking and molecular dynamic simulations confirmed the stability of construct V2 interactions with the host immune receptors. Immune simulation analysis anticipated the strong immune profile of the prioritized construct. In silico restriction cloning ensured the feasible cloning ability of the V2 construct in the expression system of E. coli strain K12. It is anticipated that the designed vaccine construct may be safe, effective, and able to elicit strong immune responses against Y. pestis infections and may, therefore, merit investigation using in vitro and in vivo assays.


Assuntos
Peste , Yersinia pestis , Yersinia pestis/imunologia , Yersinia pestis/genética , Humanos , Peste/prevenção & controle , Peste/imunologia , Vacina contra a Peste/imunologia , Vacina contra a Peste/genética , Genoma Bacteriano , Desenvolvimento de Vacinas , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Vacinas Sintéticas/imunologia , Animais
5.
Front Pharmacol ; 14: 1325227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094882

RESUMO

Tuberculosis (TB), an infectious disease caused by multi-drug resistant Mycobacterium tuberculosis (Mtb), has been a global health concern. Mtb affects over a third of the world's population, causing two million deaths annually due to its dormancy and propensity to spread infection during this period. Resuscitation-promoting factor B (RpfB) plays a pivotal role in the growth of Mtb during dormant periods, making it a critical target for eliminating Mtb and curing TB. Gymnema sylvestre is a famous medicinal plant with several medicinal properties, including antimicrobial activity; however, the therapeutic potential of the various reported metabolites of this plant against Mtb has not yet been explored. The aim of this study was to explore the reported natural products of G. sylvestre against the RpfB of the Mtb. A total of 131 reported secondary metabolites of this plant were collected and virtually screened against the RpfB. We particularly targeted the Glu292 residue of RpfB as it is crucial for the catalysis of this protein. From our in-house library, 114 compounds showed a binding affinity higher than the standard drug. The binding stability of the top three lead compounds was further confirmed through MD simulation analysis. Drug likeness analyses indicated that the ten hits had zero violations of the Lipinski rule of five. In addition, analyses of pharmacokinetics, toxicity, and target prediction revealed that the top compounds are devoid of toxicity and do not affect human proteins. Additionally, they reflect multifaceted approach as anti-TB agents. Our selected hits not only exhibit molecular properties favoring physiological compatibility but also exhibit properties enhancing their potential efficacy as therapeutic candidates. The compounds investigated here are worthy of experimental validation for the discovery of novel treatments against TB. Further, this study also provides a promising avenue for research on the pharmacological potential of G. sylvestre.

6.
Front Microbiol ; 14: 1271798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808310

RESUMO

The management of infectious diseases has become more critical due to the development of novel pathogenic strains with enhanced resistance. Prevotella melaninogenica, a gram-negative bacterium, was found to be involved in various infections of the respiratory tract, aerodigestive tract, and gastrointestinal tract. The need to explore novel drug and vaccine targets against this pathogen was triggered by the emergence of antimicrobial resistance against reported antibiotics to combat P. melaninogenica infections. The study involves core genes acquired from 14 complete P. melaninogenica strain genome sequences, where promiscuous drug and vaccine candidates were explored by state-of-the-art subtractive proteomics and reverse vaccinology approaches. A stringent bioinformatics analysis enlisted 18 targets as novel, essential, and non-homologous to humans and having druggability potential. Moreover, the extracellular and outer membrane proteins were subjected to antigenicity, allergenicity, and physicochemical analysis for the identification of the candidate proteins to design multi-epitope vaccines. Two candidate proteins (ADK95685.1 and ADK97014.1) were selected as the best target for the designing of a vaccine construct. Lead B- and T-cell overlapped epitopes were joined to generate potential chimeric vaccine constructs in combination with adjuvants and linkers. Finally, a prioritized vaccine construct was found to have stable interactions with the human immune cell receptors as confirmed by molecular docking and MD simulation studies. The vaccine construct was found to have cloning and expression ability in the bacterial cloning system. Immune simulation ensured the elicitation of significant immune responses against the designed vaccine. In conclusion, our study reported novel drug and vaccine targets and designed a multi-epitope vaccine against the P. melaninogenica infection. Further experimental validation will help open new avenues in the treatment of this multi-drug-resistant pathogen.

7.
Front Immunol ; 14: 1284621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965306

RESUMO

Primary Amoebic Meningoencephalitis (PAM), a severe lethal brain disease, is caused by a parasite, Naegleria fowleri, also known as the "brain-eating amoeba". The chances of a patient's recovery after being affected by this parasite are very low. Only 5% of people are known to survive this life-threatening infection. Despite the fact that N. fowleri causes a severe, fatal infection, there is no proper treatment available to prevent or cure it. In this context, it is necessary to formulate a potential vaccine that could be able to combat N. fowleri infection. The current study aimed at developing a multi-epitope subunit vaccine against N. fowleri by utilizing immunoinformatics techniques and reverse vaccinology approaches. The T- and B-cell epitopes were predicted by various tools. In order to choose epitopes with the ability to trigger both T- and B-cell-mediated immune responses, the epitopes were put through a screening pipeline including toxicity, antigenicity, cytokine-inductivity, and allergenicity analysis. Three vaccine constructs were designed from the generated epitopes linked with linkers and adjuvants. The modeled vaccines were docked with the immune receptors, where vaccine-1 showed the highest binding affinity. Binding affinity and stability of the docked complex were confirmed through normal mode analysis and molecular dynamic simulations. Immune simulations developed the immune profile, and in silico cloning affirmed the expression probability of the vaccine construct in Escherichia coli (E. coli) strain K12. This study demonstrates an innovative preventative strategy for the brain-eating amoeba by developing a potential vaccine through immunoinformatics and reverse vaccinology approaches. This study has great preventive potential for Primary Amoebic Meningoencephalitis, and further research is required to assess the efficacy of the designed vaccine.


Assuntos
Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Humanos , Escherichia coli , Infecções Protozoárias do Sistema Nervoso Central/prevenção & controle , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Encéfalo , Epitopos de Linfócito B , Informática , Vacinas de Subunidades Antigênicas
8.
ACS Omega ; 8(45): 43341-43355, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024731

RESUMO

The Monkeypox virus (MPXV), an orthopox virus, is responsible for monkeypox in humans, a zoonotic disease similar to smallpox. This infection first appeared in the 1970s in humans and then in 2003, after which it kept on spreading all around the world. To date, various antivirals have been used to cure this disease, but now, MPXV has developed resistance against these, thus increasing the need for an alternative cure for this deadly disease. In this study, we devised a reverse vaccinology approach against MPXV using a messenger RNA (mRNA) vaccine by pinning down the antigenic proteins of this virus. By using bioinformatic tools, we predicted prospective immunogenic B and T lymphocyte epitopes. Based on cytokine inducibility score, nonallergenicity, nontoxicity, antigenicity, and conservancy, the final epitopes were selected. Our analysis revealed the stable structure of the mRNA vaccine and its efficient expression in host cells. Furthermore, strong interactions were demonstrated with toll-like receptors 2 (TLR2) and 4 (TLR4) according to the molecular dynamic simulation studies. The in silico immune simulation analyses revealed an overall increase in the immune responses following repeated exposure to the designed vaccine. Based on our findings, the vaccine candidate designed in this study has the potential to be tested as a promising novel mRNA therapeutic vaccine against MPXV infection.

10.
Vaccines (Basel) ; 10(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36146554

RESUMO

Chikungunya virus is an alphavirus transmitted by mosquitos that develops into chikungunya fever and joint pain in humans. This virus' name originated from a Makonde term used to describe an illness that changes the joints and refers to the posture of afflicted patients who are affected by excruciating joint pain. There is currently no commercially available drug or vaccine for chikungunya virus infection and the treatment is performed by symptom reduction. Herein, we have developed a computationally constructed mRNA vaccine construct featuring envelope glycoprotein as the target molecule to aid in the treatment process. We have utilized the reverse vaccinology approach to determine epitopes that would generate adaptive immune reactions. The resulting T and B lymphocytes epitopes were screened by various immunoinformatic tools and a peptide vaccine construct was designed. It was validated by proceeding to docking and MD simulation studies. The following design was then back-translated in nucleotide sequence and codons were optimized according to the expression host system (H. sapiens). Various sequences, including 3' and 5' UTR regions, Kozak sequence, poly (A) tail, etc., were introduced into the sequence for the construction of the final mRNA vaccine construct. The secondary structure was generated for validation of the mRNA vaccine construct sequence. Additionally, in silico cloning was also performed to design a vector for proceeding towards in vitro experimentation. The proposed designed vaccine construct may proceed with experimental testing for further efficacy verification and the final development of a vaccine against chikungunya virus infection.

11.
Comput Biol Med ; 136: 104701, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34364258

RESUMO

Chlamydia trachomatis is involved in most sexually transmitted diseases. The species has emerged as a major public health threat due to its multidrug-resistant capabilities, and new therapeutic target inferences have become indispensable to combat its pathogenesis. However, no commercial vaccine is yet available to treat the C. trachomatis infection. In this study, we used the publicly available complete genome sequences of C. trachomatis and performed comparative proteomics and reverse vaccinology analyses to explore novel drug and vaccine targets against this devastating pathogen. We identified 713 core proteins from 71 C. trachomatis complete genome sequences and prioritized them based on their cellular essentiality, virulence, and available antibiotic resistance. The analyses led to the identification of 16 pathogen-specific proteins with no resolved 3D structures, though holding significant druggable potential. The sequences of the three shortlisted candidates' membrane proteins were used for designing vaccine constructs. The antigenicity, toxicity, and solubility profile-based lead epitopes were prioritized for multi-epitope-based vaccine constructs in combination with specific linkers, PADRE sequences, and molecular adjuvants for immunogenicity enhancement. The molecular-level interactions of the prioritized vaccine construct with human immune cells HLA and TLR4/MD were validated by molecular docking and molecular dynamic simulation analyses. Furthermore, the cloning and expression potential of the lead vaccine construct was predicted in the E. coli cloning vector system. Additional testing and experimental validation of these multi-epitope constructs appear promising against C. trachomatis-mediated infection.


Assuntos
Preparações Farmacêuticas , Vacinas , Chlamydia trachomatis/genética , Mineração de Dados , Epitopos de Linfócito T , Escherichia coli , Humanos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA