Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1660-1666, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266180

RESUMO

Scalable and addressable integrated manipulation of qubits is crucial for practical quantum information applications. Different waveguides have been used to transport the optical and electrical driving pulses, which are usually required for qubit manipulation. However, the separated multifields may limit the compactness and efficiency of manipulation and introduce unwanted perturbation. Here, we develop a tapered fiber-nanowire-electrode hybrid structure to realize integrated optical and microwave manipulation of solid-state spins at nanoscale. Visible light and microwave driving pulses are simultaneously transported and concentrated along an Ag nanowire. Studied with spin defects in diamond, the results show that the different driving fields are aligned with high accuracy. The spatially selective spin manipulation is realized. And the frequency-scanning optically detected magnetic resonance (ODMR) of spin qubits is measured, illustrating the potential for portable quantum sensing. Our work provides a new scheme for developing compact, miniaturized quantum sensors and quantum information processing devices.

2.
ACS Nano ; 18(40): 27393-27400, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39344122

RESUMO

Detecting a microwave signal that is emitted or reflected by distant targets is a powerful tool in fundamental science and industrial technology. Solid-state spins provide an opportunity to realize quantum-enhanced remote sensing under ambient conditions. However, the weak interaction between the free-space signal and atomic size sensor limits the sensitivity. This hinders the realization of practical quantum remote sensing. Here, we demonstrate active microwave remote sensing with a diamond-based hybrid quantum receiver by combining electromagnetic field localization at nanoscale with quantum spin manipulation. A method of differential spin refocusing (DSR) is developed to overcome the challenge of reducing the impact of inhomogeneities in spin-signal interaction, while the strength of interaction is enhanced by more than 3 orders with nanostructure. It improves the coherent interaction time of quantum receiver by 30-fold, substantially enhancing the sensitivity and stability. By detecting the reflected microwave with picotesla sensitivity, diamond remote sensing monitors the real-time status of a centimeter-sized target at 2 m distance. Our method is general to various solid-state spins. The results will expand the applications of solid-state spin quantum sensors in areas ranging from medical imaging to resource survey.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA