Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(11): 7262-7378, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38696258

RESUMO

Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.

2.
Chem Soc Rev ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747082

RESUMO

Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.

3.
Nano Lett ; 24(6): 2048-2056, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38166154

RESUMO

Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host-guest approach─centered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed "NCs@CMOF" featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.

4.
J Am Chem Soc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838264

RESUMO

Chiral atomically precise metal clusters, known for their remarkable chiroptical properties, hold great potential for applications in chirality recognition. However, advancements in this field have been constrained by the limited exploration of host-guest chemistry, involving metal clusters. This study reports the synthesis of a chiral Cu16(C2B10H10S2)8 (denoted as Cu16@CB8, where C2B10H12S2H2 = 9,12-(HS)2-1,2-closo-carborane) cluster by an achiral carboranylthiolate ligand. The chiral R-/S-Cu16@CB8 cluster features chiral cavities reminiscent of cyclodextrins, which are surrounded by carborane clusters, yet they crystallize in a racemate. These cyclodextrin-like cavities demonstrated the specific recognition of amino acids, as indicated by the responsive output of circular dichroism and circularly polarized luminescence signals of Cu16 moieties of the Cu16@CB8 cluster. Notably, a quantitative chiroptical analysis of amino acids in a short time and a concomitant deracemization of Cu16@CB8 were achieved. Density functional tight-binding molecular dynamics simulation and noncovalent interaction analysis further unraveled the great importance of the cavities and binding sites for chiral recognition. Dipeptide, tripeptide, and polypeptide containing the corresponding amino acids (Cys, Arg, or His residues) display the same chiral recognition, showing the generality of this approach. The functional synergy of dual clusters, comprising carborane and metal clusters, is for the first time demonstrated in the Cu16@CB8 cluster, resulting in the valuable quantification of the enantiomeric excess (ee) value of amino acids. This work opens a new avenue for chirality sensors based on chiral metal clusters with unique chiroptical properties and inspires the development of carborane clusters in host-guest chemistry.

5.
J Am Chem Soc ; 146(5): 3545-3552, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277257

RESUMO

Atom-precise metal nanoclusters (NCs) with large bulk (nuclearity >60) are important species for insight into the embryonic phase of metal nanoparticles and their top-down etching synthesis. Herein, we report a metastable rod-shaped 70-nuclei copper-hydride NC, [Cl@Cu70H22(PhC≡C)29(CF3COO)16]2+ (Cu70), with Cl- as the template, in which the Cl@Cu59 kernel adopts a distinctive metal packing mode along the bipolar direction, and the protective ligand shell exhibits corresponding site differentiation. In terms of metal nuclearity, Cu70 is the largest alkynyl-stabilized Cu-hydride cluster to date. As a typical highly active intermediate, Cu70 could undergo a transformation into a series of robust modularly assembled Cu clusters (B-type Cu8, A-A-type Cu22, A-B-type Cu23, and A-B-A-type Cu38) upon etching by p-tert-butylthiacalix[4]arene (H4TC4A), which could not be achieved by "one-pot" synthetic methods. Notably, the patterns of A and B blocks in the Cu NCs could be effectively modulated by employing appropriate counterions and blockers, and the modular assembly mechanism was illustrated through comprehensive solution chemistry analysis using HR-ESI-MS. Furthermore, catalytic investigations reveal that Cu38 could serve as a highly efficient catalyst for the cycloaddition of propargylic amines with CO2 under mild conditions. This work not only enriched the family of high-nuclear copper-hydride NCs but also provided new insights into the growth mechanism of metal NCs.

6.
J Am Chem Soc ; 146(6): 4144-4152, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315569

RESUMO

Circularly polarized light-emitting diodes (CP-LEDs) are critical for next-generation optical technologies, ranging from holography to quantum information processing. Currently deployed chiral luminescent materials, with their intricate synthesis and processing and limited efficiency, are the main bottleneck for CP-LEDs. Chiral metal nanoclusters (MNCs) are potential CP-LED materials, given their ease of synthesis and processability as well as diverse structures and excited states. However, their films are usually plagued by inferior electronic quality and aggregation-caused photoluminescence quenching, necessitating their incorporation into host materials; without such a scheme, MNC-based LEDs exhibit external quantum efficiencies (EQEs) < 10%. Herein, we achieve an efficiency leap for both CP-LEDs and cluster-based LEDs by using novel chiral MNCs with aggregation-induced emission enhancement. CP-LEDs using enantiopure MNC films attain EQEs of up to 23.5%. Furthermore, by incorporating host materials, the devices yield record EQEs of up to 36.5% for both CP-LEDs and cluster-based LEDs, along with electroluminescence dissymmetry factors (|gEL|) of around 1.0 × 10-3. These findings open a new avenue for advancing chiral light sources for next-generation optoelectronics.

7.
Small ; 20(26): e2310970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243848

RESUMO

Hypergolicity is a highly desired characteristic for hybrid rocket engine-based fuels because it eliminates the need for a separate ignition system. Introducing hypergolic additives into conventional fuels through physical mixing is a feasible approach, but achieving highly reliable hypergolic ignition and energy release remains a major challenge. Here, the construction of core-shell Al@metal organic framework (MOF) heterostructures is reported as high-performance solid hypergolic propellants. Upon contact with the liquid oxidizer the uniformly distributed hypergolic MOF (Ag-MOF) shell can induce the ignition of hypergolic-inert fuel Al, resulting in Al combustion. Such a synthetic strategy is demonstrated to be favorable in hotspot generation and heat transfer relative to a simple physical mixture of Al/Ag-MOF, thus producing shorter ignition delay times and more efficient combustion. Thermal reactivity study indicated that the functionalization of the Ag-MOF shell changes the energy release process of the inner Al, which is accompanied by a thermite reaction. The synergistic effect of implantation of hypergolic MOF and high energy Al contributes to high specific impulses of 230-270 s over a wide range of oxidizer-to-fuel ratios.

8.
Support Care Cancer ; 32(7): 420, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850487

RESUMO

PURPOSE: This study aims to investigate the Readiness for Return-to-Work (RRTW) of patients with head and neck tumours and to analyse the relationships among self-efficacy, disease uncertainty, psychosocial adaptation, and RRTW in head and neck cancer (HNC) patients. METHODS: A cross-sectional study was conducted with 259 HNC patients with a discharge length of ≥1 month at a tertiary hospital in Liaoning Province. The research tools included a self-designed general information questionnaire, the Readiness for Return-to-Work (RRTW) Scale, the General Self-Efficacy Scale (GSES), the Mishel Uncertainty in Illness Scale (MUIS), and the Self-Reporting Psychosocial Adjustment to Illness Scale (PAIS-SR). Descriptive statistical analysis, the rank sum test, Spearman correlation analysis, and ordered multiple and dichotomous logistic regression analyses were used. RESULTS: The overall RRTW among HNC patients was low (41.9%). HNC patients who did not return to work were mainly in the precontemplation stage (38.1%) and contemplation stage (29.9%). HNC patients who returned to work were mainly in the active maintenance stage (64.2%). Children's status (OR = 0.218, 95% CI 0.068-0.703), self-efficacy (OR = 1.213, 95% CI 1.012-1.454), unpredictability (OR = 0.845, 95% CI 0.720-0.990), occupational environment (OR = 0.787, 95% CI 0.625-0.990), and family environment (OR = 0.798, 95% CI 0.643-0.990) influence the RRTW of HNC patients who have not returned to work. Educational level (OR = 62.196, 95% CI 63.307-68.567), children's status (OR = 0.058, 95% CI 1.004-2.547), self-efficacy (OR = 1.544, 95% CI 3.010-8.715), unpredictability (OR = 0.445, 95% CI 1.271-2.280), and psychological status (OR = 0.340, 95% CI 1.141-2.401) influence the RRTW of HNC patients who have returned to work. CONCLUSION: Children's status, education level, self-efficacy, illness uncertainty, and psychosocial adjustment are crucial to RRTW. This study provides a theoretical basis for formulating intervention measures aimed at improving the RRTW of patients.


Assuntos
Adaptação Psicológica , Neoplasias de Cabeça e Pescoço , Retorno ao Trabalho , Autoeficácia , Humanos , Estudos Transversais , Masculino , Feminino , Retorno ao Trabalho/estatística & dados numéricos , Retorno ao Trabalho/psicologia , Neoplasias de Cabeça e Pescoço/psicologia , Neoplasias de Cabeça e Pescoço/reabilitação , Pessoa de Meia-Idade , Adulto , Inquéritos e Questionários , Idoso , China , Incerteza
9.
Support Care Cancer ; 32(2): 128, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261108

RESUMO

PURPOSE: To describe the health information-seeking experience and its influencing factors of people with head and neck neoplasms undergoing treatment. METHODS: This was a descriptive phenomenology study. Participants were recruited by purposive sampling. The semistructured interviews and all observation results were recorded. The data were analysed using Colaizzi's method. RESULTS: Fourteen participants were selected. We identified four themes that illustrate factors that influence the health information-seeking behaviour of participants: patients' awareness of health information needs, patients' competence, doctor-patient communication, and online advertising interference. We also determined the value of different types of information and patients' information needs and sources. CONCLUSION: These findings can help professionals understand patients' behaviours and think about how to deliver practical information support in a network environment to guide patients in continuous information seeking while taking specific factors into account.


Assuntos
Neoplasias de Cabeça e Pescoço , Comportamento de Busca de Informação , Humanos , Neoplasias de Cabeça e Pescoço/terapia , Pesquisa Qualitativa , Comportamentos Relacionados com a Saúde , Relações Médico-Paciente
10.
BMC Geriatr ; 24(1): 111, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287240

RESUMO

BACKGROUND: Multiple negative health outcomes were linked to residential proximity to major roadways. Nevertheless, there is limited knowledge regarding the association between residential proximity to major roadways and chronic multimorbidity. METHODS: We used data from the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey, which included 12,214 individuals aged ≥ 60. We derived the residential proximity to major roadways from self-reported data, defining chronic multimorbidity as the presence of two or more concurrent chronic diseases. A binary logistic regression model was utilized to investigate the association between residential proximity to major roadways and chronic multimorbidity. The model accounted for some demographic features, socioeconomic conditions, social participation, and health conditions. Subsequently, we conducted subgroup analyses to examine potential interaction effects. RESULTS: Residential proximity to major roadways was associated with chronic multimorbidity, even after adjusting for confounding factors. Compared with those living > 300 m from major roadways, the OR for those living 201-300 m, 101-200 m, 50-100 m, and < 50 m were increased. When subgroup analyses were conducted using a cutoff point of 200 m, the risk of chronic multimorbidity associated with residential proximity to major roadways was stronger in participants with education levels > 6 years (P = 0.017). CONCLUSION: Our findings provide important implications for improving residential area siting, transportation policies, and environmental regulations to reduce the risk of chronic multimorbidity caused by traffic-related exposure.


Assuntos
Multimorbidade , Emissões de Veículos , Humanos , Idoso , Emissões de Veículos/análise , Estudos Transversais , Modelos Logísticos , China/epidemiologia
11.
Appetite ; 192: 107120, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972655

RESUMO

The COVID-19 pandemic has significantly impacted individuals' mental health, resulting in a higher incidence of depression, anxiety, and changes in eating behaviors. The objective of this study is to examine the inter-relationships among obesity-related eating behavior, depression, and anxiety in adults during the COVID-19 pandemic, utilizing a network analysis method. We conducted a cross-sectional survey among a representative sample of 9091 adults between July 10 and September 15, 2021. Participants completed self-report measures to assess obesity-related eating behavior and symptoms of depression and anxiety. Network analysis was employed to investigate the inter-relationships among these variables. The network analysis revealed that item 2 (i.e., Do not feel satisfied unless I eat until full) exhibited the highest node strength within the network, followed by item 5 (i.e., Like oily foods). In addition, positive correlations were found between the severity of depression and anxiety and most of the obesity-related eating behavior items. These findings offer valuable insights into the interplay between obesity-related eating behavior, depression, and anxiety during the COVID-19 pandemic, underscoring the significance of considering these factors in comprehending and addressing mental health and well-being in adults. Further research is warranted to explore potential interventions and treatment approaches that specifically target the identified relationships.


Assuntos
COVID-19 , Depressão , Adulto , Humanos , Estudos Transversais , Depressão/complicações , Depressão/epidemiologia , Pandemias , COVID-19/epidemiologia , Ansiedade/complicações , Ansiedade/epidemiologia , Comportamento Alimentar , Obesidade/complicações , Obesidade/epidemiologia
12.
Chem Soc Rev ; 52(1): 383-444, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36533405

RESUMO

Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.

13.
Angew Chem Int Ed Engl ; 63(8): e202316910, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179795

RESUMO

Electrocatalytic reduction of nitrate (NO3 RR) to synthesize ammonia (NH3 ) provides a competitive manner for carbon neutrality and decentralized NH3 synthesis. Atomically precise nanoclusters, as an advantageous platform for investigating the NO3 RR mechanisms and actual active sites, remain largely underexplored due to the poor stability. Herein, we report a (NH4 )9 [Ag9 (mba)9 ] nanoclusters (Ag9 NCs) loaded on Ti3 C2 MXene (Ag9 /MXene) for highly efficient NO3 RR performance towards ambient NH3 synthesis with improved stability in neutral medium. The composite structure of MXene and Ag9 NCs enables a tandem catalysis process for nitrate reduction, significantly increasing the selectivity and FE of NH3 . Besides, compared with individual Ag9 NCs, Ag9 /MXene has better stability with the current density performed no decay after 108 hours of reaction. This work provides a strategy for improving the catalytic activity and stability of atomically precise metal NCs, expanding the mechanism research and application of metal NCs.

14.
Angew Chem Int Ed Engl ; 63(10): e202318338, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38230982

RESUMO

Carbon-based single-atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon-based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave-assisted rapid pyrolysis method is developed to afford carbon-based SACs within 3 min without inert gas protection. The obtained carbon-based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single-atom Ni implanted N-doped carbon (Ni1 -N-C) derived from a Ni-doped metal-organic framework (Ni-ZIF-8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO ) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1 -N-C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large-scale synthesis of SACs as well as other carbon-based materials for efficient catalysis.

15.
Angew Chem Int Ed Engl ; 63(19): e202402363, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497318

RESUMO

Crystalline frameworks represent a cutting-edge frontier in material science, and recently, there has been a surge of interest in energetic crystalline frameworks. However, the well-established porosity often leads to diminished output energy, necessitating a novel approach for performance enhancement. Thiol-yne coupling, a versatile metal-free click reaction, has been underutilized in crystalline frameworks. As a proof of concept, we herein demonstrate the potential of this approach by introducing the energy-rich, size-matched, and reductive 1,2-dicarbadodecaborane-1-thiol (CB-SH) into an acetylene-functionalized framework, Zn(AIm)2, via thiol-yne click reaction. This innovative decoration strategy resulted in a remarkable 46.6 % increase in energy density, a six-fold reduction in ignition delay time (4 ms) with red fuming nitric acid as the oxidizer, and impressive enhancement of stability. Density functional theory calculations were employed to elucidate the mechanism by which CB-SH promotes hypergolic ignition. The thiol-yne click modification strategy presented here permits engineering of crystalline frameworks for the design of advanced energetic materials.

16.
Angew Chem Int Ed Engl ; : e202407887, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802322

RESUMO

Circularly polarized light (CPL) detection is of great significance in various applications such as drug identification, sensing and imaging. Atomically precise chiral metal nanoclusters with intense circular dichroism (CD) signals are promising candidates for CPL detection, which can further facilitate device miniaturization and integration. Herein, we report the preparation of a pair of optically active chiral silver nanoclusters [Ag7(R/S-DMA)2(dpppy)3] (BF4)3 (R/S-Ag7) for direct CPL detection. The crystal structure and molecular formula of R/S-Ag7 clusters are confirmed by single-crystal x-ray diffraction and high-resolution mass spectrometry. R/S-Ag7 clusters exhibit strong CD spectra and CPL luminescence both in solution and solid states. When used as the photoactive materials in photodetectors, R/S-Ag7 enables effective discrimination between left-handed circularly polarized and right-handed circularly polarized light at 520 nm with short response time, high responsivity and considerable discrimination ratio. This study is the first report on using atomically precise chiral metal nanoclusters for CPL detection.

17.
Angew Chem Int Ed Engl ; : e202401724, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691401

RESUMO

The dual emission (DE) characteristics of atomically precise copper nanoclusters (Cu NCs) are of significant theoretical and practical interest. Despite this, the underlying mechanism driving DE in Cu NCs remains elusive, primarily due to the complexities of excited state processes. Herein, a novel [Cu4(PPh3)4(C≡C-p-NH2C6H4)3]PF6 (Cu4) NC, shielded by alkynyl and exhibiting DE, was synthesized. Hydrostatic pressure was applied to Cu4, for the first time, to investigate the mechanism of DE. With increasing pressure, the higher-energy emission peak of Cu4 gradually disappeared, leaving the lower-energy emission peak as the dominant emission. Additionally, the Cu4 crystal exhibited notable piezochromism transitioning from cyan to orange. Angle-dispersive synchrotron X-ray diffraction results revealed that the reduced inter-cluster distances under pressure brought the peripheral ligands closer, leading to the formation of new C-H⋅⋅⋅N and N-H⋅⋅⋅N hydrogen bonds in Cu4. It is proposed that these strengthened hydrogen bond interactions limit the ligands' vibration, resulting in the vanishing of the higher-energy peak. In situ high-pressure Raman and vibrationally resolved emission spectra demonstrated that the benzene ring C=C stretching vibration is the structural source of the DE in Cu4.

18.
Angew Chem Int Ed Engl ; 63(13): e202318030, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38308534

RESUMO

The specific states of aggregation of metal atoms in sub-nanometer-sized gold clusters are related to the different quantum confinement volumes of electrons, leading to novel optical and electronic properties. These volumes can be tuned by changing the relative positions of the gold atoms to generate isomers. Studying the isomeric gold core and the electron coupling between the basic units is fundamentally important for nanoelectronic devices and luminescence; however, appropriate cases are lacking. In this study, the structure of the first staggered di-superatomic Au25 -S was solved using single-crystal X-ray diffraction. The optical properties of Au25 -S were studied by comparing with eclipsed Au25 -E. From Au25 -E to Au25 -S, changes in the electronic structures occurred, resulting in significantly different optical absorptions originating from the coupling between the two Au13 modules. Au25 -S shows a longer electron decay lifetime of 307.7 ps before populating the lowest triplet emissive state, compared to 1.29 ps for Au25 -E. The experimental and theoretical results show that variations in the geometric isomerism lead to distinct photophysical processes owing to isomerism-dependent electronic coupling. This study offers new insights into the connection between the geometric isomerism of nanosized building blocks and the optical properties of their assemblies, opening new possibilities for constructing function-specific nanomaterials.

19.
J Am Chem Soc ; 145(25): 13514-13519, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37306940

RESUMO

Luminescent metal-organic cages are of great interest in contemporary research; however, their designed synthesis remains challenging. Here, we created metal-cluster-derived spacers, where emissive C3-symmetric Cu4 clusters have three arms modified by benzene alkynyl ligands, which are terminally functionalized by extensile -COOH and 15-crown-5-ether groups with directional coordination ability. Through vertex orientation, -COOH-functionalized cluster-based spacers coassembled with paddle-wheel Cu(I)xZn(II)2-x(COO)3 nodes in 3+3 mode, generating an emissive cubic cage, which subsequently gave another distorted cubic cage by synthetic modification on the nodes. Through face orientation, 15-crown-5-ether-containing cluster-based spacers capturing K+ ions in 3+2 mode produced an octahedral cage whose empty phase showed dual emission peaks, leading to diverse stimuli-responsive photoluminescence. This work provides new design and synthesis strategies for the integration of nodes and spacers based on metal clusters for cage materials as well as prototypes of luminescent metal-cluster cages for important sensing applications.

20.
J Am Chem Soc ; 145(11): 6166-6176, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912642

RESUMO

Superstructures made from nanoscale clusters with new collective properties are promising in high-tech applications; however, chiral superstructures remain elusive, and the limited intercluster coupling effect at room temperature hampers the tailoring of collective properties. Here, we show that from chiral monomeric copper clusters to two enantiomeric pairs of supercrystals with distinct phases, the absorption band edge red-shifts by over 1.3 eV, with photoluminescence and circularly polarized phosphorescence from visible (572 nm) to near-infrared (NIR, 858 nm). These supercrystals with high NIR quantum yields of up to 45% at room temperature are prototyped for night-vision imaging. In response to solvent and temperature stimuli, chiral supercrystal-to-supercrystal transformations occurred, concomitant with high-contrast optical/chiroptical switching. In situ single-crystal X-ray diffraction (SCXRD), steady-state and time-resolved optical spectroscopy, and response experiments combined with theoretical calculations demonstrate that distance-sensitive intercluster orbital interactions contribute to the exceptional collective optical responses. Such chiral supercrystals built from subnanoscale metal clusters with novel collective chiroptical responses would be useful in the fields of information storage and NIR optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA