Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 182: 109071, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31887467

RESUMO

The current experimental study presents particulate emissions from 30 Euro 1-4 L-category vehicles (i.e. 2-, 3- and 4-wheelers such as mopeds, motorcycles, quads and minicars, registered in Europe between 2009 and 2016) tested on a chassis dynamometer. The objectives were to identify those sub-categories with high emissions, to assess whether the measures prescribed in the Euro 5 legislation will effectively control particulate emissions and finally to investigate the need for additional measures. The results showed that 2-stroke (2S) mopeds and diesel minicars comprised the vehicles with the highest particulate mass (PM) and solid particle number above 23 nm (SPN23) emissions (up to 64 mg/km and 4.5 × 1013 km-1, respectively). It is uncertain whether the installation of diesel particulate filters (DPF) is a cost-effective measure for diesel mini-cars in order to comply with Euro 5 standard, while advanced emission controls will be required for 2S mopeds, if such vehicles remain competitive for Euro 5. Regarding 4-stroke mopeds, motorcycles and quads, PM emissions were one order of magnitude lower than 2S ones and already below the Euro 5 limit. Nevertheless, SPN23 emissions from these sub-categories were up to 5 times higher than the Euro 6 passenger cars limit (6 × 1011 km-1). Even recent Euro 4 motorcycles exceeded this limit by up to 3 times. These results indicate that L-category vehicles are a significant contributor to vehicular particulate emissions and should be further monitored during and after the introduction of the Euro 5 step. Moreover, including SPN in the range 10-23 nm increases emission levels by up to 2.4 times compared to SPN23, while volatile and semi-volatile particle numbers were even higher. Finally, cold engine operation was found to be a significant contributor on SPN23 emissions, especially for vehicles with lower overall emission levels. These results indicate that a specific particle number limit may be required for L-category to align emissions with passenger cars.


Assuntos
Poluentes Atmosféricos , Material Particulado , Emissões de Veículos , Europa (Continente) , Gasolina , Veículos Automotores , Emissões de Veículos/análise
2.
Sci Rep ; 7(1): 4926, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706240

RESUMO

Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NOX). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

3.
Nat Commun ; 5: 3749, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24825457

RESUMO

Fossil fuel-powered vehicles emit significant particulate matter, for example, black carbon and primary organic aerosol, and produce secondary organic aerosol. Here we quantify secondary organic aerosol production from two-stroke scooters. Cars and trucks, particularly diesel vehicles, are thought to be the main vehicular pollution sources. This needs re-thinking, as we show that elevated particulate matter levels can be a consequence of 'asymmetric pollution' from two-stroke scooters, vehicles that constitute a small fraction of the fleet, but can dominate urban vehicular pollution through organic aerosol and aromatic emission factors up to thousands of times higher than from other vehicle classes. Further, we demonstrate that oxidation processes producing secondary organic aerosol from vehicle exhaust also form potentially toxic 'reactive oxygen species'.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Cidades , Motocicletas , Material Particulado/análise , Espécies Reativas de Oxigênio/análise , Emissões de Veículos/análise , Ásia , Europa (Continente) , Combustíveis Fósseis , Humanos
4.
Faraday Discuss ; 137: 377-88; discussion 403-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18214115

RESUMO

We use Dynamic Light Scattering (DLS) to characterize non-spherical, micrometre-sized, single aerosol particles levitated in an electrodynamic or in a quasi-electrostatic balance. These are either solid salt particles effloresced from an aqueous salt solution droplet upon drying, or mixed phase aerosol particles, i.e. aqueous solution droplets containing a single solid salt inclusion. We show that the shortest decay of the temporal intensity autocorrelation function measured in the far field scattering pattern can be quantitatively analyzed. We treat the scattering pattern as if arising from an equivalent sized Mie sphere, and we attribute the temporal intensity fluctuations to rotational Brownian motion of the whole particle. This analysis allows sizing of non-spherical particles. We have indications that the long tails of the autocorrelation functions are due to deviations of the scattering pattern from that of a Mie sphere, leading to spikes in the temporal evolution of the intensity because of the rotational Brownian motion. We also show that the diffusional motion of an inclusion within the aqueous solution of a host droplet is masked by rotational Brownian motion, prohibiting even a qualitative analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA