Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Membranes (Basel) ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121090

RESUMO

Forward Osmosis (FO) is a promising technology that can offer sustainable solutions in the biorefinery wastewater and desalination fields, via low energy water recovery. However, microbial biomass and organic matter accumulation on membrane surfaces can hinder the water recovery and potentially lead to total membrane blockage. Biofouling development is a rather complex process and can be affected by several factors such as nutrient availability, chemical composition of the solutions, and hydrodynamic conditions. Therefore, operational parameters like cross-flow velocity and pH of the filtration solution have been proposed as effective biofouling mitigation strategies. Nevertheless, most of the studies have been conducted with the use of rather simple solutions. As a result, biofouling mitigation practices based on such studies might not be as effective when applying complex industrial mixtures. In the present study, the effect of cross-flow velocity, pH, and cell concentration of the feed solution was investigated, with the use of complex solutions during FO separation. Specifically, fermentation effluent and crude glycerol were used as a feed and draw solution, respectively, with the purpose of recirculating water by using FO alone. The effect of the abovementioned parameters on (i) ATP accumulation, (ii) organic foulant deposition, (iii) total water recovery, (iv) reverse glycerol flux, and (v) process butanol rejection has been studied. The main findings of the present study suggest that significant reduction of biofouling can be achieved as a combined effect of high-cross flow velocity and low feed solution pH. Furthermore, cell removal from the feed solution prior filtration may further assist the reduction of membrane blockage. These results may shed light on the challenging, but promising field of FO process dealing with complex industrial solutions.

2.
Sci Total Environ ; 647: 1021-1030, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180310

RESUMO

Forward osmosis (FO) can be used to reclaim nutrients and high-quality water from wastewater streams. This could potentially contribute towards relieving global water scarcity. Here we investigated the feasibility of extracting water from four real and four synthetic anaerobically digested effluents, using FO membranes. The goal of this study was to 1) evaluate FO membrane performance in terms of water flux and nutrient rejection 2) examine the methane yield that can be achieved and 3) analyse FO membrane fouling. Out of the four tested real anaerobically digested effluents, swine manure and potato starch wastewater achieved the highest combined average FO water flux (>3 liter per square meter per hour (LMH) with 0.66 M MgCl2 as initial draw solution concentration) and methane yield (>300 mL CH4 per gram of organic waste expressed as volatile solids (VS)). Rejection of total ammonia nitrogen (TAN), total Kjeldahl nitrogen (TKN) and total phosphorous (TP) was high (up to 96.95%, 95.87% and 99.83%, respectively), resulting in low nutrient concentrations in the recovered water. Membrane autopsy revealed presence of organic and biological fouling on the FO membrane. However, no direct correlation between feed properties and methane yield and fouling potential was found, indicating that there is no inherent trade-off between high water flux and high methane production.

3.
Environ Technol ; 38(18): 2295-2304, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27802786

RESUMO

Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD7) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.


Assuntos
Osmose , Águas Residuárias , Purificação da Água , Filtração , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA