Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Med Virol ; 96(7): e29783, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965890

RESUMO

Many COVID-19 patients suffer from gastrointestinal symptoms and impaired intestinal barrier function is thought to play a key role in Long COVID. Despite its importance, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on intestinal epithelia is poorly understood. To address this, we established an intestinal barrier model integrating epithelial Caco-2 cells, mucus-secreting HT29 cells and Raji cells. This gut epithelial model allows efficient differentiation of Caco-2 cells into microfold-like cells, faithfully mimics intestinal barrier function, and is highly permissive to SARS-CoV-2 infection. Early strains of SARS-CoV-2 and the Delta variant replicated with high efficiency, severely disrupted barrier function, and depleted tight junction proteins, such as claudin-1, occludin, and ZO-1. In comparison, Omicron subvariants also depleted ZO-1 from tight junctions but had fewer damaging effects on mucosal integrity and barrier function. Remdesivir, the fusion inhibitor EK1 and the transmembrane serine protease 2 inhibitor Camostat inhibited SARS-CoV-2 replication and thus epithelial barrier damage, while the Cathepsin inhibitor E64d was ineffective. Our results support that SARS-CoV-2 disrupts intestinal barrier function but further suggest that circulating Omicron variants are less damaging than earlier viral strains.


Assuntos
COVID-19 , Mucosa Intestinal , SARS-CoV-2 , Junções Íntimas , Replicação Viral , Humanos , SARS-CoV-2/patogenicidade , Células CACO-2 , COVID-19/virologia , COVID-19/patologia , Mucosa Intestinal/virologia , Mucosa Intestinal/patologia , Junções Íntimas/virologia , Alanina/análogos & derivados , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Antivirais/farmacologia , Células HT29 , Ocludina/metabolismo , Ocludina/genética , Monofosfato de Adenosina/análogos & derivados
2.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198527

RESUMO

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , Peptídeos , Amiloide/química , Antibacterianos/farmacologia , Hemoglobinas
3.
J Virol ; 96(6): e0207721, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35225672

RESUMO

Emerging strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, that show increased transmission fitness and/or immune evasion are classified as "variants of concern" (VOCs). Recently, a SARS-CoV-2 variant first identified in November 2021 in South Africa has been recognized as a fifth VOC, termed "Omicron." What makes this VOC so alarming is the high number of changes, especially in the viral Spike protein, and accumulating evidence for increased transmission efficiency and escape from neutralizing antibodies. In an amazingly short time, the Omicron VOC has outcompeted the previously dominating Delta VOC. However, it seems that the Omicron VOC is overall less pathogenic than other SARS-CoV-2 VOCs. Here, we provide an overview of the mutations in the Omicron genome and the resulting changes in viral proteins compared to other SARS-CoV-2 strains and discuss their potential functional consequences.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/imunologia , COVID-19/virologia , Genoma Viral , Humanos , Evasão da Resposta Imune , Mutação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
J Virol ; 96(11): e0059422, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35543509

RESUMO

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.


Assuntos
Pulmão , Proteínas de Membrana , SARS-CoV-2 , Replicação Viral , COVID-19/virologia , Linhagem Celular Tumoral , Humanos , Pulmão/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Internalização do Vírus
5.
Bioconjug Chem ; 34(9): 1645-1652, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37665137

RESUMO

Viral infections pose a significant threat to human health, and effective antiviral strategies are urgently needed. Antiviral peptides have emerged as a promising class of therapeutic agents due to their unique properties and mechanisms of action. While effective on their own, combining antiviral peptides may allow us to enhance their potency and to prevent viral resistance. Here, we developed an orthogonal chemical strategy to prepare a heterodimeric peptide conjugate assembled on a protein-based nanoplatform. Specifically, we combined the optimized version of two peptides inhibiting HIV-1 by distinct mechanisms. Virus-inhibitory peptide (VIRIP) is a 20 amino acid fragment of α1-antitrypsin that inhibits HIV-1 by targeting the gp41 fusion peptide. Endogenous peptide inhibitor of CXCR4 (EPI-X4) is a 16-residue fragment of human serum albumin that prevents HIV-1 entry by binding to the viral CXCR4 co-receptor. Optimized forms of both peptides are assembled on supramolecular nanoplatforms through the streptavidin-biotin interaction. We show that the construct consisting of the two different peptides (SAv-VIR-102C9-EPI-X4 JM#173-C) shows increased activity against CCR5- and CXCR4-tropic HIV-1 variants. Our results are a proof of concept that peptides with different modes of action can be assembled on nanoplatforms to enhance their antiviral activity.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Peptídeos/farmacologia , Albumina Sérica Humana , Antivirais
6.
Am J Physiol Cell Physiol ; 322(4): C591-C604, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196166

RESUMO

Primary airway epithelial cells (pAECs) cultivated at air-liquid interface (ALI) conditions are widely used as surrogates for human in vivo epithelia. To extend the proliferative capacity and to enable serially passaging of pAECs, conditional reprogramming (cr) has been employed in recent years. However, ALI epithelia derived from cr cells often display functional changes with increasing passages. This highlights the need for thorough validation of the ALI cultures for the respective application. In our study, we evaluated the use of serially passaged cr nasal epithelial cells (crNECs) as a model to study SARS-CoV-2 infection and effects on ion and water transport. NECs were obtained from healthy individuals and cultivated as ALI epithelia derived from passages 1, 2, 3, and 5. We compared epithelial differentiation, ion and water transport, and infection with SARS-CoV-2 between passages. Our results show that epithelia maintained major differentiation characteristics and physiological ion and water transport properties through all passages. However, the frequency of ciliated cells, short circuit currents reflecting epithelial Na+ channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) activity and expression of aquaporin 3 and 5 decreased gradually over passages. crNECs also expressed SARS-CoV-2 receptors angiotensin converting enzyme 2 (ACE2) and transmembrane serin2 protease 2 (TMPRSS2) across all passages and allowed SARS-CoV-2 replication in all passages. In summary, we provide evidence that passaged crNECs provide an appropriate model to study SARS-CoV-2 infection and also epithelial transport function when considering some limitations that we defined herein.


Assuntos
COVID-19 , Diferenciação Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Recém-Nascido , SARS-CoV-2
7.
Clin Infect Dis ; 75(1): e653-e661, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35079775

RESUMO

BACKGROUND: Most of the millions of people that are vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), have previously been infected by related circulating human coronaviruses (hCoVs) causing common colds and will experience further encounters with these viruses in the future. Whether COVID-19 vaccinations impact neutralization of seasonal coronaviruses is largely unknown. METHODS: We analyzed the capacity of sera derived from 24 individuals before and after heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination to neutralize genuine OC43, NL63, and 229E hCoVs, as well as viral pseudoparticles carrying the SARS-CoV-1, SARS-CoV-2, Middle East Respiratory Syndrome (MERS)-CoV, and hCoV-OC43, hCoV-NL63, and hCoV-229E spike proteins. Genuine hCoVs or spike containing pseudovirions were incubated with different concentrations of sera and neutralization efficiencies were determined by measuring viral RNA yields, intracellular viral nucleocapsid expression, or reporter gene expression in Huh-7 cells. RESULTS: All individuals showed strong preexisting immunity against hCoV-OC43. Neutralization of hCoV-NL63 was more variable and all sera showed only modest inhibitory activity against genuine hCoV-229E. SARS-CoV-2 vaccination resulted in efficient cross-neutralization of SARS-CoV-1 but not of MERS-CoV. On average, vaccination significantly increased the neutralizing activity against genuine hCoV-OC43, hCoV-NL63, and hCoV-229E. CONCLUSIONS: Heterologous COVID-19 vaccination may confer some cross-protection against endemic seasonal coronaviruses.


Assuntos
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2 , Estações do Ano , Vacinação
8.
Adv Exp Med Biol ; 1366: 65-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412135

RESUMO

The discovery of the G-protein coupled-receptor (GPCR) CXCR4 as a major coreceptor of HIV-1 entry about three decades ago explained why the chemokine SDF-1/CXCL12 inhibits specific viral strains. The knowledge that RANTES, MlP-1α, and MlP-1ß specifically inhibit other primary HIV-1 strains allowed the rapid discovery of CCR5 as second major viral coreceptor and explained why individuals with deletions in CCR5 are protected against sexual HIV-1 transmission. Here, we provide an update on endogenous ligands of GPCRs that act as endogenous inhibitors of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) entry. In addition, we summarize the development of optimized derivatives of endogenous GPCR ligands and their perspectives as antiviral agents and beyond. Finally, we provide examples for other endogenous peptides that may contribute to our innate immune defense against HIV-1 and other viral pathogens and offer prospects for preventive or therapeutic development.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , HIV-1/fisiologia , HIV-2/metabolismo , HIV-2/fisiologia , Humanos , Ligantes , Peptídeos/uso terapêutico , Receptores CCR5 , Receptores Acoplados a Proteínas G/uso terapêutico , Transdução de Sinais , Vírus da Imunodeficiência Símia
10.
Viruses ; 16(2)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399953

RESUMO

Coronaviruses are a large family of enveloped RNA viruses found in numerous animal species. They are well known for their ability to cross species barriers and have been transmitted from bats or intermediate hosts to humans on several occasions. Four of the seven human coronaviruses (hCoVs) are responsible for approximately 20% of common colds (hCoV-229E, -NL63, -OC43, -HKU1). Two others (SARS-CoV-1 and MERS-CoV) cause severe and frequently lethal respiratory syndromes but have only spread to very limited extents in the human population. In contrast the most recent human hCoV, SARS-CoV-2, while exhibiting intermediate pathogenicity, has a profound impact on public health due to its enormous spread. In this review, we discuss which initial features of the SARS-CoV-2 Spike protein and subsequent adaptations to the new human host may have helped this pathogen to cause the COVID-19 pandemic. Our focus is on host forces driving changes in the Spike protein and their consequences for virus infectivity, pathogenicity, immune evasion and resistance to preventive or therapeutic agents. In addition, we briefly address the significance and perspectives of broad-spectrum therapeutics and vaccines.


Assuntos
COVID-19 , Coronavirus Humano 229E , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Pandemias , SARS-CoV-2
11.
iScience ; 26(11): 108299, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026181

RESUMO

Additional mutations in the viral Spike protein helped the BA.2.12.1 and BA.4/5 SARS-CoV-2 Omicron subvariants to outcompete the parental BA.2 subvariant. Here, we determined the functional impact of mutations that newly emerged in the BA.2.12.1 (L452Q, S704L) and BA.4/5 (Δ69-70, L452R, F486V, R493Q) Spike proteins. Our results show that mutation of L452Q/R or F486V typically increases and R493Q or S704L impair BA.2 Spike-mediated infection. In combination, changes of Δ69-70, L452R, and F486V contribute to the higher infectiousness and fusogenicity of the BA.4/5 Spike. L452R/Q and F486V in Spike are mainly responsible for reduced sensitivity to neutralizing antibodies. However, the combined mutations are required for full infectivity, reduced TMPRSS2 dependency, and immune escape of BA.4/5 Spike. Thus, it is the specific combination of mutations in BA.4/5 Spike that allows increased functionality and immune evasion, which helps to explain the temporary dominance and increased pathogenicity of these Omicron subvariants.

12.
iScience ; 26(4): 106395, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968088

RESUMO

Opposing effects of interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) on SARS-CoV-2 infection have been reported. The reasons for this are unclear and the role of IFITMs in infection of other human coronaviruses (hCoVs) remains poorly understood. Here, we demonstrate that endogenous expression of IFITM2 and/or IFITM3 is critical for efficient replication of SARS-CoV-1, SARS-CoV-2 and hCoV-OC43 but has little effect on MERS-, NL63-and 229E-hCoVs. In contrast, overexpression of IFITMs inhibits all these hCoVs, and the corresponding spike-containing pseudo-particles, except OC43, which is enhanced by IFITM3. We further demonstrate that overexpression of IFITMs impairs cell surface expression of ACE2 representing the entry receptor of SARS-CoVs and hCoV-NL63 but not hCoV-OC43. Our results explain the inhibitory effects of artificial IFITM overexpression on ACE2-tropic SARS-CoVs and show that three hCoVs, including major causative agents of severe respiratory disease, hijack IFITMs for efficient infection of human cells.

13.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977594

RESUMO

The IFN system constitutes a powerful antiviral defense machinery. Consequently, effective IFN responses protect against severe COVID-19 and exogenous IFNs inhibit SARS-CoV-2 in vitro. However, emerging SARS-CoV-2 variants of concern (VOCs) may have evolved reduced IFN sensitivity. Here, we determined differences in replication and IFN susceptibility of an early SARS-CoV-2 isolate (NL-02-2020) and the Alpha, Beta, Gamma, Delta, and Omicron VOCs in Calu-3 cells, iPSC-derived alveolar type-II cells (iAT2) and air-liquid interface (ALI) cultures of primary human airway epithelial cells. Our data show that Alpha, Beta, and Gamma replicated to similar levels as NL-02-2020. In comparison, Delta consistently yielded higher viral RNA levels, whereas Omicron was attenuated. All viruses were inhibited by type-I, -II, and -III IFNs, albeit to varying extend. Overall, Alpha was slightly less sensitive to IFNs than NL-02-2020, whereas Beta, Gamma, and Delta remained fully sensitive. Strikingly, Omicron BA.1 was least restricted by exogenous IFNs in all cell models. Our results suggest that enhanced innate immune evasion rather than higher replication capacity contributed to the effective spread of Omicron BA.1.


Assuntos
COVID-19 , Interferons , Humanos , Interferons/farmacologia , SARS-CoV-2 , Antivirais/farmacologia
14.
Commun Biol ; 6(1): 1051, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848611

RESUMO

Utilization of human ACE2 allowed several bat coronaviruses (CoVs), including the causative agent of COVID-19, to infect humans directly or via intermediate hosts. However, the determinants of species-specific differences in ACE2 usage and the frequency of the ability of animal CoVs to use human ACE2 are poorly understood. Here we applied VSV pseudoviruses to analyze the ability of Spike proteins from 26 human or animal CoVs to use ACE2 receptors across nine reservoir, potential intermediate and human hosts. We show that SARS-CoV-2 Omicron variants evolved towards more efficient ACE2 usage but mutation of R493Q in BA.4/5 and XBB Spike proteins disrupts utilization of ACE2 from Greater horseshoe bats. Variations in ACE2 residues 31, 41 and 354 govern species-specific differences in usage by coronaviral Spike proteins. Mutation of T403R allows the RaTG13 bat CoV Spike to efficiently use all ACE2 orthologs for viral entry. Sera from COVID-19 vaccinated individuals neutralize the Spike proteins of various bat Sarbecoviruses. Our results define determinants of ACE2 receptor usage of diverse CoVs and suggest that COVID-19 vaccination may protect against future zoonoses of bat coronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Quirópteros , Reservatórios de Doenças , Animais , Humanos , Enzima de Conversão de Angiotensina 2/genética , Quirópteros/genética , Vacinas contra COVID-19 , Reservatórios de Doenças/virologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Viruses ; 14(12)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560790

RESUMO

Infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, leads to profound remodeling of cellular membranes, promoting viral replication and virion assembly. A full understanding of this drastic remodeling and the process of virion morphogenesis remains lacking. In this study, we applied room temperature transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) tomography to visualize the SARS-CoV-2 replication factory in Vero cells, and present our results in comparison with published cryo-EM studies. We obtained cryo-EM-like clarity of the ultrastructure by employing high-pressure freezing, freeze substitution (HPF-FS) and embedding, allowing room temperature visualization of double-membrane vesicles (DMVs) in a near-native state. In addition, our data illustrate the consecutive stages of virion morphogenesis and reveal that SARS-CoV-2 ribonucleoprotein assembly and membrane curvature occur simultaneously. Finally, we show the tethering of virions to the plasma membrane in 3D, and that accumulations of virus particles lacking spike protein in large vesicles are most likely not a result of defective virion assembly at their membrane. In conclusion, this study puts forward a room-temperature EM technique providing near-native ultrastructural information about SARS-CoV-2 replication, adding to our understanding of the interaction of this pandemic virus with its host cell.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , Humanos , Células Vero , Pandemias , Vírion/ultraestrutura
16.
Cell Host Microbe ; 30(9): 1255-1268.e5, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35931073

RESUMO

SARS-CoV-2 Omicron rapidly outcompeted other variants and currently dominates the COVID-19 pandemic. Its enhanced transmission and immune evasion are thought to be driven by numerous mutations in the Omicron Spike protein. Here, we systematically introduced BA.1 and/or BA.2 Omicron Spike mutations into the ancestral Spike protein and examined the impacts on Spike function, processing, and susceptibility to neutralization. Individual mutations of S371F/L, S375F, and T376A in the ACE2-receptor-binding domain as well as Q954H and N969K in the hinge region 1 impaired infectivity, while changes to G339D, D614G, N764K, and L981F moderately enhanced it. Most mutations in the N-terminal region and receptor-binding domain reduced the sensitivity of the Spike protein to neutralization by sera from individuals vaccinated with the BNT162b2 vaccine and by therapeutic antibodies. Our results represent a systematic functional analysis of Omicron Spike adaptations that have allowed this SARS-CoV-2 variant to dominate the current pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Humanos , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral
17.
Biomolecules ; 11(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067685

RESUMO

Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum ß-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25-50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antivirais/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/química , Candida albicans/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , SARS-CoV-2/efeitos dos fármacos
18.
Nat Commun ; 12(1): 6855, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824253

RESUMO

The bat sarbecovirus RaTG13 is a close relative of SARS-CoV-2, the cause of the COVID-19 pandemic. However, this bat virus was most likely unable to directly infect humans since its Spike (S) protein does not interact efficiently with the human ACE2 receptor. Here, we show that a single T403R mutation increases binding of RaTG13 S to human ACE2 and allows VSV pseudoparticle infection of human lung cells and intestinal organoids. Conversely, mutation of R403T in the SARS-CoV-2 S reduces pseudoparticle infection and viral replication. The T403R RaTG13 S is neutralized by sera from individuals vaccinated against COVID-19 indicating that vaccination might protect against future zoonoses. Our data suggest that a positively charged amino acid at position 403 in the S protein is critical for efficient utilization of human ACE2 by S proteins of bat coronaviruses. This finding could help to better predict the zoonotic potential of animal coronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Animais , COVID-19/virologia , Vacinas contra COVID-19 , Células CACO-2 , Clonagem Molecular , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutação , Replicon , Especificidade da Espécie , Células-Tronco , Zoonoses
19.
Cell Rep ; 35(7): 109126, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33974846

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades most innate immune responses but may still be vulnerable to some. Here, we systematically analyze the impact of SARS-CoV-2 proteins on interferon (IFN) responses and autophagy. We show that SARS-CoV-2 proteins synergize to counteract anti-viral immune responses. For example, Nsp14 targets the type I IFN receptor for lysosomal degradation, ORF3a prevents fusion of autophagosomes and lysosomes, and ORF7a interferes with autophagosome acidification. Most activities are evolutionarily conserved. However, SARS-CoV-2 Nsp15 antagonizes IFN signaling less efficiently than the orthologs of closely related RaTG13-CoV and SARS-CoV-1. Overall, SARS-CoV-2 proteins counteract autophagy and type I IFN more efficiently than type II or III IFN signaling, and infection experiments confirm potent inhibition by IFN-γ and -λ1. Our results define the repertoire and selected mechanisms of SARS-CoV-2 innate immune antagonists but also reveal vulnerability to type II and III IFN that may help to develop safe and effective anti-viral approaches.


Assuntos
COVID-19/virologia , SARS-CoV-2/imunologia , Proteínas Virais/imunologia , Animais , Antivirais/farmacologia , Autofagossomos/imunologia , Autofagia/imunologia , COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Exorribonucleases/imunologia , Células HEK293 , Células HeLa , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/metabolismo , Interferons/metabolismo , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , SARS-CoV-2/patogenicidade , Células Vero , Proteínas não Estruturais Virais/imunologia
20.
Nat Commun ; 12(1): 4584, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321474

RESUMO

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Antígenos de Diferenciação/genética , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/farmacologia , Antígenos de Diferenciação/metabolismo , Sítios de Ligação , COVID-19/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Interferon beta/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA