Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Health ; 21(Suppl 1): 129, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635712

RESUMO

Human health risk assessment currently uses the reference dose or reference concentration (RfD, RfC) approach to describe the level of exposure to chemical hazards without appreciable risk for non-cancer health effects in people. However, this "bright line" approach assumes that there is minimal risk below the RfD/RfC with some undefined level of increased risk at exposures above the RfD/RfC and has limited utility for decision-making. Rather than this dichotomous approach, non-cancer risk assessment can benefit from incorporating probabilistic methods to estimate the amount of risk across a wide range of exposures and define a risk-specific dose. We identify and review existing approaches for conducting probabilistic non-cancer risk assessments. Using perchloroethylene (PCE), a priority chemical for the U.S. Environmental Protection Agency under the Toxic Substances Control Act, we calculate risk-specific doses for the effects on cognitive deficits using probabilistic risk assessment approaches. Our probabilistic risk assessment shows that chronic exposure to 0.004 ppm PCE is associated with approximately 1-in-1,000 risk for a 5% reduced performance on the Wechsler Memory Scale Visual Reproduction subtest with 95% confidence. This exposure level associated with a 1-in-1000 risk for non-cancer neurocognitive deficits is lower than the current RfC for PCE of 0.0059 ppm, which is based on standard point of departure and uncertainty factor approaches for the same neurotoxic effects in occupationally exposed adults. We found that the population-level risk of cognitive deficit (indicating central nervous system dysfunction) is estimated to be greater than the cancer risk level of 1-in-100,000 at a similar chronic exposure level. The extension of toxicological endpoints to more clinically relevant endpoints, along with consideration of magnitude and severity of effect, will help in the selection of acceptable risk targets for non-cancer effects. We find that probabilistic approaches can 1) provide greater context to existing RfDs and RfCs by describing the probability of effect across a range of exposure levels including the RfD/RfC in a diverse population for a given magnitude of effect and confidence level, 2) relate effects of chemical exposures to clinical disease risk so that the resulting risk assessments can better inform decision-makers and benefit-cost analysis, and 3) better reflect the underlying biology and uncertainties of population risks.


Assuntos
Reprodução , Adulto , Humanos , Incerteza , Medição de Risco/métodos
2.
Environ Health ; 21(Suppl 1): 132, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635734

RESUMO

The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded by regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a "safe" or "no-risk" level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection.


Assuntos
Poluentes Ambientais , Humanos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Saúde Ambiental , Poluentes Ambientais/análise , Saúde Pública , Medição de Risco , Conferências de Consenso como Assunto
3.
Annu Rev Public Health ; 37: 83-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26735429

RESUMO

Many communities are located near multiple sources of pollution, including current and former industrial sites, major roadways, and agricultural operations. Populations in such locations are predominantly low-income, with a large percentage of minorities and non-English speakers. These communities face challenges that can affect the health of their residents, including limited access to health care, a shortage of grocery stores, poor housing quality, and a lack of parks and open spaces. Environmental exposures may interact with social stressors, thereby worsening health outcomes. Age, genetic characteristics, and preexisting health conditions increase the risk of adverse health effects from exposure to pollutants. There are existing approaches for characterizing cumulative exposures, cumulative risks, and cumulative health impacts. Although such approaches have merit, they also have significant constraints. New developments in exposure monitoring, mapping, toxicology, and epidemiology, especially when informed by community participation, have the potential to advance the science on cumulative impacts and to improve decision making.


Assuntos
Meio Ambiente , Exposição Ambiental/efeitos adversos , Políticas , Características de Residência , Saúde da População Urbana , Poluição do Ar/efeitos adversos , Doença Crônica/epidemiologia , Clima , Países em Desenvolvimento , Planejamento Ambiental , Métodos Epidemiológicos , Sistemas de Informação Geográfica , Saúde Global , Humanos , Ruído/efeitos adversos , Medição de Risco , Meio Social , Fatores Socioeconômicos , Urbanização/tendências
4.
Environ Res ; 117: 90-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22770859

RESUMO

BACKGROUND: Increasing data on early biological changes from chemical exposures requires new interpretation tools to support decision-making. OBJECTIVES: To test the possibility of applying a quantitative approach using human data linking chemical exposures and upstream biological perturbations to overt downstream outcomes. METHODS: Using polychlorinated biphenyl (PCB) exposures and maternal thyroid hormone (TH) perturbations as a case study, we model three relationships: (1) prenatal PCB exposures and TH changes, using free T(4) (FT(4)); (2) prenatal TH and childhood neurodevelopmental outcomes; and (3) prenatal PCB exposures and childhood neurodevelopmental outcomes (IQ). We surveyed the epidemiological literature; extracted relevant quantitative data; and developed models for each relationship, applying meta-analysis where appropriate. RESULTS: For relationship 1, a meta-analysis of 3 studies gives a coefficient of -0.27 pg/mL FT(4) per ln(sum of PCBs) (95% confidence interval [CI] -0.82 to 0.27). For relationship 2, regression coefficients from three studies of maternal FT(4) levels and cognitive scores ranged between 0.99 IQ points/(pg/mL FT(4)) (95% CI -0.31 to 2.2) and 7.6 points/(pg/mL FT(4)) (95% CI 1.2 to 16.3). For relationship 3, a meta-analysis of five studies produces a coefficient of -1.98 IQ points (95% CI -4.46 to 0.50) per unit increase in ln(sum of PCBs). Combining relationships 1 and 2 yields an estimate of -2.0 to -0.27 points of IQ per unit increase in ln(sum of PCBs). CONCLUSIONS: Combining analysis of chemical exposures and early biological perturbations (PCBs and FT(4)) with analysis of early biological perturbations and downstream overt effects (FT(4) and IQ) yields estimates within the range of studies of exposures and overt effects (PCBs and IQ). This is an example approach using upstream biological perturbations for effect prediction.


Assuntos
Desenvolvimento Infantil/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Inteligência/efeitos dos fármacos , Modelos Biológicos , Bifenilos Policlorados/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Hormônios Tireóideos/metabolismo , Carga Corporal (Radioterapia) , Criança , Feminino , Feto/metabolismo , Humanos , Lactente , Testes de Inteligência , Masculino , Gravidez , Análise de Regressão , Medição de Risco
5.
Environ Res ; 116: 74-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22575326

RESUMO

There is a growing need for quantitative approaches to extrapolate relationships between chemical exposures and early biological perturbations from animals to humans given increasing use of biological assays to evaluate toxicity pathways. We have developed such an approach using polychlorinated biphenyls (PCBs) and thyroid hormone (TH) disruption as a case study. We reviewed and identified experimental animal literature from which we developed a low-dose, linear model of PCB body burdens and decrements in free thyroxine (FT(4)) and total thyroxine (TT(4)), accounting for 33 PCB congeners; extrapolated the dose-response from animals to humans; and compared the animal dose-response to the dose-response of PCB body burdens and TH changes from eleven human epidemiological studies. We estimated a range of potencies for PCB congeners (over 4 orders of magnitude), with the strongest for PCB 126. Our approach to developing toxic equivalency models produced relative potencies similar to the toxicity equivalency factors (TEFs) from the World Health Organization (WHO). We generally found that the dose-response extrapolated from the animal studies tends to under-predict the dose-response estimated from human epidemiological studies. A quantitative approach to evaluating the relationship between chemical exposures and TH perturbations, based on animal data can be used to assess human health consequences of thyroid toxicity and inform decision-making.


Assuntos
Disruptores Endócrinos/toxicidade , Exposição Ambiental , Modelos Biológicos , Bifenilos Policlorados/toxicidade , Hormônios Tireóideos/sangue , Animais , Carga Corporal (Radioterapia) , Relação Dose-Resposta a Droga , Disruptores Endócrinos/sangue , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Feminino , Humanos , Masculino , Bifenilos Policlorados/sangue , Gravidez , Ratos , Ratos Sprague-Dawley , Medição de Risco
6.
Birth Defects Res ; 114(18): 1169-1185, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125082

RESUMO

This review summarizes the most common potential pathways of neurodevelopmental toxicity due to perinatal exposure to Δ9 -tetrahydrocannabinol (Δ9 -THC) that lead to behavioral and other adverse outcomes (AOs). This is Part III in a set of reviews highlighting the animal-derived data considered by California's Developmental and Reproductive Toxicant Identification Committee (DARTIC) in 2019. The Hazard Identification Document (HID) provided to the DARTIC included a summary of human, whole animal, and mechanistic data on the neurodevelopmental toxicity of cannabis smoke and Δ9 -THC. The literature search for mechanistic data has been updated through 2020. We focus on mechanistic pathways relating to behavioral and other neurodevelopmental outcomes of perinatal exposure to Δ9 -THC. The endocannabinoid system (EC system) plays a crucial role in many processes involved in neurodevelopment and exposure to Δ9 -THC can alter these processes. Whole animal studies report changes in cognitive ability, behavior, and motor function after prenatal exposure to Δ9 -THC. Findings from mechanistic studies add to this evidence and further provide information regarding the pathways leading to these outcomes. Neuromechanistic studies can bridge the gaps between molecular initiating events and apical neurodevelopmental endpoints caused by a chemical. They offer insight into potential alterations in the same pathways by other chemicals that can also result in AOs. Studies of cannabinoid receptor agonist-induced molecular alterations and provide deep biological plausibility at the mechanistic level for the cognitive, behavioral, and motor impairments observed in animal studies after perinatal exposure to Δ9 -THC.


Assuntos
Cannabis , Dronabinol , Animais , Gravidez , Feminino , Humanos , Dronabinol/toxicidade , Cannabis/toxicidade , Agonistas de Receptores de Canabinoides , Fumaça , Reprodução
7.
Birth Defects Res ; 114(18): 1155-1168, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36111653

RESUMO

This review focuses on neurodevelopmental effects observed in animal studies of cannabis smoke and Δ9 -THC. Effects in offspring after preconceptional, prenatal, or perinatal exposure to cannabis smoke or Δ9 -THC were considered. Locomotor and exploratory behavior effects were noted in rats. Cognitive effects observed included impairment of memory and learning, attention deficits, time taken to complete tasks (rats) and alterations in response to visual stimuli (rats/monkeys). Emotionality was observed in rodents as an increase in separation-induced ultrasonic vocalizations, reduced social interaction and play behavior, and increased generalized anxiety. Increased rate of acquisition of morphine self-administration and/or enhanced sensitivity towards the rewarding effects of morphine or heroin were observed in adult rats prenatally exposed to Δ9 -THC. Expression of cannabinoid receptors was examined in rodent studies along with behavioral parameters. Altered mRNA levels of genes relevant to synaptic plasticity in the nucleus accumbens (the brain region associated with compulsivity, addiction vulnerability, and reward sensitivity) were noted. Findings in zebrafish supported effects in mammalian models. Neurochemical effects on specific brain regions and neurotransmitter systems seen in these animal studies appear to impact cognitive function, motor activity, and drug sensitivity. Mechanistic studies provided evidence for the biological plausibility of effects observed. Observations from animal studies of changes in motor behavior, cognitive performance, emotionality and susceptibility to drug sensitivity later in life were among the findings from animal and human studies considered by California's Developmental and Reproductive Toxicant Identification Committee, in concluding that cannabis smoke and Δ9 -THC are developmental toxicants.


Assuntos
Cannabis , Dronabinol , Gravidez , Humanos , Feminino , Animais , Ratos , Dronabinol/toxicidade , Cannabis/efeitos adversos , Fumaça , Peixe-Zebra , Derivados da Morfina , Mamíferos
8.
Birth Defects Res ; 114(18): 1143-1154, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36177831

RESUMO

OBJECTIVES: On December 11, 2019, California's Developmental and Reproductive Toxicant Identification Committee (DARTIC) met to consider the addition of cannabis smoke and Δ9 -THC to the Proposition 65 list as causing reproductive toxicity (developmental endpoint). As the lead state agency for implementing Proposition 65, the Office of Environmental Health Hazard Assessment (OEHHA) reviewed and summarized the relevant scientific literature in the form of a hazard identification document (HID). Here we provide reviews based on the HID: shortened, revised, and reformatted for a larger audience. METHODS: While the HID included both human and animal data, this set of three reviews will highlight the animal-derived data pertaining to somatic development (Part I), neurodevelopmental effects (Part II), and proposed neurodevelopmental mechanisms of action (Part III). RESULTS: Endogenous cannabinoids (eCBs) and their receptors serve many critical functions in normal development. Δ9 -THC can interfere with these functions. Mechanistic studies employed techniques including: blocking Δ9 -THC binding to endocannabinoid (EC) receptors, inhibiting Δ9 -THC metabolism, and/or using animals expressing knockout mutations of EC receptors. Apical somatic effects of cannabis smoke or Δ9 -THC reported in whole animal studies included decreases in offspring viability and growth. Mechanistic studies discussed in Part I focused on Δ9 -THC effects on early embryos and implantation, immune development, and bone growth. CONCLUSIONS: In reaching its decision to list cannabis and Δ9 -THC as a developmental toxicant under California's Proposition 65, the DARTIC considered biological plausibility and the consistency of mechanistic information with effects reported in human and whole animal studies.


Assuntos
Cannabis , Dronabinol , Animais , Cannabis/toxicidade , Dronabinol/toxicidade , Fumaça/efeitos adversos , Teratogênicos , Técnicas de Inativação de Genes , California
9.
J Expo Sci Environ Epidemiol ; 32(6): 808-819, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36207486

RESUMO

BACKGROUND: Despite their large numbers and widespread use, very little is known about the extent to which per- and polyfluoroalkyl substances (PFAS) can cross the placenta and expose the developing fetus. OBJECTIVE: The aim of our study is to develop a computational approach that can be used to evaluate the of extend to which small molecules, and in particular PFAS, can cross to cross the placenta and partition to cord blood. METHODS: We collected experimental values of the concentration ratio between cord and maternal blood (RCM) for 260 chemical compounds and calculated their physicochemical descriptors using the cheminformatics package Mordred. We used the compiled database to, train and test an artificial neural network (ANN). And then applied the best performing model to predict RCM for a large dataset of PFAS chemicals (n = 7982). We, finally, examined the calculated physicochemical descriptors of the chemicals to identify which properties correlated significantly with RCM. RESULTS: We determined that 7855 compounds were within the applicability domain and 127 compounds are outside the applicability domain of our model. Our predictions of RCM for PFAS suggested that 3623 compounds had a log RCM > 0 indicating preferable partitioning to cord blood. Some examples of these compounds were bisphenol AF, 2,2-bis(4-aminophenyl)hexafluoropropane, and nonafluoro-tert-butyl 3-methylbutyrate. SIGNIFICANCE: These observations have important public health implications as many PFAS have been shown to interfere with fetal development. In addition, as these compounds are highly persistent and many of them can readily cross the placenta, they are expected to remain in the population for a long time as they are being passed from parent to offspring. IMPACT: Understanding the behavior of chemicals in the human body during pregnancy is critical in preventing harmful exposures during critical periods of development. Many chemicals can cross the placenta and expose the fetus, however, the mechanism by which this transport occurs is not well understood. In our study, we developed a machine learning model that describes the transplacental transfer of chemicals as a function of their physicochemical properties. The model was then used to make predictions for a set of 7982 per- and polyfluorinated alkyl substances that are listed on EPA's CompTox Chemicals Dashboard. The model can be applied to make predictions for other chemical categories of interest, such as plasticizers and pesticides. Accurate predictions of RCM can help scientists and regulators to prioritize chemicals that have the potential to cause harm by exposing the fetus.


Assuntos
Aprendizado de Máquina , Humanos
10.
Environ Health Perspect ; 130(10): 105001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36201310

RESUMO

BACKGROUND: Key characteristics (KCs), properties of agents or exposures that confer potential hazard, have been developed for carcinogens and other toxicant classes. KCs have been used in the systematic assessment of hazards and to identify assay and data gaps that limit screening and risk assessment. Many of the mechanisms through which pharmaceuticals and occupational or environmental agents modulate immune function are well recognized. Thus KCs could be identified for immunoactive substances and applied to improve hazard assessment of immunodulatory agents. OBJECTIVES: The goal was to generate a consensus-based synthesis of scientific evidence describing the KCs of agents known to cause immunotoxicity and potential applications, such as assays to measure the KCs. METHODS: A committee of 18 experts with diverse specialties identified 10 KCs of immunotoxic agents, namely, 1) covalently binds to proteins to form novel antigens, 2) affects antigen processing and presentation, 3) alters immune cell signaling, 4) alters immune cell proliferation, 5) modifies cellular differentiation, 6) alters immune cell-cell communication, 7) alters effector function of specific cell types, 8) alters immune cell trafficking, 9) alters cell death processes, and 10) breaks down immune tolerance. The group considered how these KCs could influence immune processes and contribute to hypersensitivity, inappropriate enhancement, immunosuppression, or autoimmunity. DISCUSSION: KCs can be used to improve efforts to identify agents that cause immunotoxicity via one or more mechanisms, to develop better testing and biomarker approaches to evaluate immunotoxicity, and to enable a more comprehensive and mechanistic understanding of adverse effects of exposures on the immune system. https://doi.org/10.1289/EHP10800.


Assuntos
Substâncias Perigosas , Sistema Imunitário , Carcinógenos , Consenso , Substâncias Perigosas/toxicidade , Preparações Farmacêuticas
11.
Environ Health Perspect ; 129(3): 35003, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784186

RESUMO

BACKGROUND: People are exposed to numerous chemicals throughout their lifetimes. Many of these chemicals display one or more of the key characteristics of carcinogens or interact with processes described in the hallmarks of cancer. Therefore, evaluating the effects of chemical mixtures on cancer development is an important pursuit. Challenges involved in designing research studies to evaluate the joint action of chemicals on cancer risk include the time taken to perform the experiments because of the long latency and choosing an appropriate experimental design. OBJECTIVES: The objectives of this work are to present the case for developing a research program on mixtures of environmental chemicals and cancer risk and describe recommended approaches. METHODS: A working group comprising the coauthors focused attention on the design of mixtures studies to inform cancer risk assessment as part of a larger effort to refine the key characteristics of carcinogens and explore their application. Working group members reviewed the key characteristics of carcinogens, hallmarks of cancer, and mixtures research for other disease end points. The group discussed options for developing tractable projects to evaluate the joint effects of environmental chemicals on cancer development. RESULTS AND DISCUSSION: Three approaches for developing a research program to evaluate the effects of mixtures on cancer development were proposed: a chemical screening approach, a transgenic model-based approach, and a disease-centered approach. Advantages and disadvantages of each are discussed. https://doi.org/10.1289/EHP8525.


Assuntos
Carcinógenos , Neoplasias , Carcinógenos/toxicidade , Humanos , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Risco
12.
Environ Health Perspect ; 129(9): 95001, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34558968

RESUMO

BACKGROUND: The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES: We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS: An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS: The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION: These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carcinógenos , Poluentes Ambientais/toxicidade , Substâncias Perigosas/toxicidade , Material Particulado/análise
13.
J Toxicol Environ Health B Crit Rev ; 13(2-4): 51-138, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20574894

RESUMO

With the release of the landmark report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences, in 2007, precipitated a major change in the way toxicity testing is conducted. It envisions increased efficiency in toxicity testing and decreased animal usage by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters. Risk assessment in the exposed human population would focus on avoiding significant perturbations in these toxicity pathways. Computational systems biology models would be implemented to determine the dose-response models of perturbations of pathway function. Extrapolation of in vitro results to in vivo human blood and tissue concentrations would be based on pharmacokinetic models for the given exposure condition. This practice would enhance human relevance of test results, and would cover several test agents, compared to traditional toxicological testing strategies. As all the tools that are necessary to implement the vision are currently available or in an advanced stage of development, the key prerequisites to achieving this paradigm shift are a commitment to change in the scientific community, which could be facilitated by a broad discussion of the vision, and obtaining necessary resources to enhance current knowledge of pathway perturbations and pathway assays in humans and to implement computational systems biology models. Implementation of these strategies would result in a new toxicity testing paradigm firmly based on human biology.


Assuntos
Poluentes Ambientais/toxicidade , Testes de Toxicidade/métodos , Testes de Toxicidade/tendências , Animais , Poluentes Ambientais/análise , História do Século XX , História do Século XXI , Humanos , National Academy of Sciences, U.S. , Medição de Risco/métodos , Testes de Toxicidade/história , Estados Unidos , United States Environmental Protection Agency
14.
Birth Defects Res B Dev Reprod Toxicol ; 89(6): 441-66, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21136531

RESUMO

Bisphenol A (BPA) exposure has been documented in pregnant women, but consequences for development are not yet widely studied in human populations. This review presents research on the consequences for offspring of BPA exposure during pregnancy. Extensive work in laboratory rodents has evaluated survival and growth of the conceptus, interference with embryonic programs of development, morphological sex differentiation, sex differentiation of the brain and behavior, immune responsiveness, and mechanism of action. Sensitive measures include RAR, aryl hydrocarbon receptor, and Hox A10 gene expression, anogenital distance, sex differentiation of affective and exploratory behavior, and immune hyperresponsiveness. Many BPA effects are reported at low doses (10-50 µg/kg d range) by the oral route of administration. At high doses (>500,000 µg/kg d) fetal viability is compromised. Much of the work has centered around the implications of the estrogenic actions of this agent. Some work related to thyroid mechanism of action has also been explored. BPA research has actively integrated current knowledge of developmental biology, concepts of endocrine disruption, and toxicological research to provide a basis for human health risk assessment.


Assuntos
Anormalidades Induzidas por Medicamentos/etiologia , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Estrogênios não Esteroides/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Exposição Materna/efeitos adversos , Fenóis/toxicidade , Anormalidades Induzidas por Medicamentos/epidemiologia , Animais , Compostos Benzidrílicos , Feminino , Humanos , Masculino , Gravidez , Diferenciação Sexual/efeitos dos fármacos
15.
Risk Anal ; 30(7): 1028-36, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20497395

RESUMO

At the request of the U.S. Environmental Protection Agency (EPA), the National Research Council (NRC) recently completed a major report, Science and Decisions: Advancing Risk Assessment, that is intended to strengthen the scientific basis, credibility, and effectiveness of risk assessment practices and subsequent risk management decisions. The report describes the challenges faced by risk assessment and the need to consider improvements in both the technical analyses of risk assessments (i.e., the development and use of scientific information to improve risk characterization) and the utility of risk assessments (i.e., making assessments more relevant and useful for risk management decisions). The report tackles a number of topics relating to improvements in the process, including the design and framing of risk assessments, uncertainty and variability characterization, selection and use of defaults, unification of cancer and noncancer dose-response assessment, cumulative risk assessment, and the need to increase EPA's capacity to address these improvements. This article describes and summarizes the NRC report, with an eye toward its implications for risk assessment practices at EPA.


Assuntos
Medição de Risco/métodos , Relação Dose-Resposta a Droga , Humanos , Nível de Efeito Adverso não Observado , Medição de Risco/estatística & dados numéricos , Medição de Risco/tendências , Gestão de Riscos , Estados Unidos , United States Environmental Protection Agency
16.
Nat Rev Endocrinol ; 16(1): 45-57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31719706

RESUMO

Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with hormone action, thereby increasing the risk of adverse health outcomes, including cancer, reproductive impairment, cognitive deficits and obesity. A complex literature of mechanistic studies provides evidence on the hazards of EDC exposure, yet there is no widely accepted systematic method to integrate these data to help identify EDC hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we have developed ten KCs of EDCs based on our knowledge of hormone actions and EDC effects. In this Expert Consensus Statement, we describe the logic by which these KCs are identified and the assays that could be used to assess several of these KCs. We reflect on how these ten KCs can be used to identify, organize and utilize mechanistic data when evaluating chemicals as EDCs, and we use diethylstilbestrol, bisphenol A and perchlorate as examples to illustrate this approach.


Assuntos
Consenso , Disruptores Endócrinos/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Animais , Exposição Ambiental/prevenção & controle , Poluentes Ambientais/metabolismo , Humanos , Receptores da Corticotropina/metabolismo
17.
Cancer Epidemiol Biomarkers Prev ; 29(10): 1887-1903, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32152214

RESUMO

The key characteristics (KC) of human carcinogens provide a uniform approach to evaluating mechanistic evidence in cancer hazard identification. Refinements to the approach were requested by organizations and individuals applying the KCs. We assembled an expert committee with knowledge of carcinogenesis and experience in applying the KCs in cancer hazard identification. We leveraged this expertise and examined the literature to more clearly describe each KC, identify current and emerging assays and in vivo biomarkers that can be used to measure them, and make recommendations for future assay development. We found that the KCs are clearly distinct from the Hallmarks of Cancer, that interrelationships among the KCs can be leveraged to strengthen the KC approach (and an understanding of environmental carcinogenesis), and that the KC approach is applicable to the systematic evaluation of a broad range of potential cancer hazards in vivo and in vitro We identified gaps in coverage of the KCs by current assays. Future efforts should expand the breadth, specificity, and sensitivity of validated assays and biomarkers that can measure the 10 KCs. Refinement of the KC approach will enhance and accelerate carcinogen identification, a first step in cancer prevention.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."


Assuntos
Biomarcadores/metabolismo , Carcinógenos/metabolismo , Neoplasias/diagnóstico , Humanos , Neoplasias/patologia
18.
Environ Health Perspect ; 117(2): 283-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19270800

RESUMO

Low-dose extrapolation model selection for evaluating the health effects of environmental pollutants is a key component of the risk assessment process. At a workshop held in Baltimore, Maryland, on 23-24 April 2007, sponsored by U.S. Environmental Protection Agency and Johns Hopkins Risk Sciences and Public Policy Institute, a multidisciplinary group of experts reviewed the state of the science regarding low-dose extrapolation modeling and its application in environmental health risk assessments. Participants identified discussion topics based on a literature review, which included examples for which human responses to ambient exposures have been extensively characterized for cancer and/or noncancer outcomes. Topics included the need for formalized approaches and criteria to assess the evidence for mode of action (MOA), the use of human versus animal data, the use of MOA information in biologically based models, and the implications of interindividual variability, background disease processes, and background exposures in threshold versus nonthreshold model choice. Participants recommended approaches that differ from current practice for extrapolating high-dose animal data to low-dose human exposures, including categorical approaches for integrating information on MOA, statistical approaches such as model averaging, and inference-based models that explicitly consider uncertainty and interindividual variability.


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Medição de Risco/métodos , Relação Dose-Resposta a Droga , Maryland , Neoplasias , Estados Unidos , United States Environmental Protection Agency
20.
Risk Anal ; 29(4): 474-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19144067

RESUMO

At the request of the Environmental Protection Agency, the National Research Council (NRC) recently completed a major report entitled Toxicity Testing in the 21st Century: A Vision and a Strategy. The terms of reference for this report were to develop a long-range vision and strategic plan to advance the practices of toxicity testing and human health assessment of environmental agents. The report describes how current and anticipated scientific advances can be expected to transform toxicity testing to permit broader coverage of the universe of potentially toxic chemicals to which humans may be exposed, using more timely and more cost-effective methods for toxicity testing. The report envisages greatly expanded use of high- and medium-throughput in vitro screening assays, computational toxicology, and systems biology, along with other emerging high-content testing methodologies, such as functional genomics and transcriptomics. When fully implemented, the vision will transform the ways toxicity testing and chemical risk assessment are conducted, moving away from measuring apical health endpoints in experimental animals toward identification of significant perturbations of toxicity pathways using in vitro tests in human cells and cell lines. Population-based studies incorporating relevant biomarkers will also be useful in identifying pathway perturbations directly in humans and in interpreting the results of in vitro tests in the context of human health risk assessment. The present article summarizes and extends the NRC report and examines its implications for risk assessment practice.


Assuntos
Poluentes Ambientais/toxicidade , Testes de Toxicidade/métodos , Animais , Exposição Ambiental , História do Século XXI , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA