Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 153(5): 976-87, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706736

RESUMO

Paused RNA polymerase (Pol II) is a pervasive feature of Drosophila embryos and mammalian stem cells, but its role in development is uncertain. Here, we demonstrate that a spectrum of paused Pol II determines the "time to synchrony"-the time required to achieve coordinated gene expression across the cells of a tissue. To determine whether synchronous patterns of gene activation are significant in development, we manipulated the timing of snail expression, which controls the coordinated invagination of ∼1,000 mesoderm cells during gastrulation. Replacement of the strongly paused snail promoter with moderately paused or nonpaused promoters causes stochastic activation of snail expression and increased variability of mesoderm invagination. Computational modeling of the dorsal-ventral patterning network recapitulates these variable and bistable gastrulation profiles and emphasizes the importance of timing of gene activation in development. We conclude that paused Pol II and transcriptional synchrony are essential for coordinating cell behavior during morphogenesis.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Dados de Sequência Molecular , Morfogênese , Regiões Promotoras Genéticas
2.
J Biol Chem ; 299(1): 102760, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462664

RESUMO

After a COVID-related hiatus, the fifth biennial symposium on Evolution and Core Processes in Gene Regulation met at the Stowers Institute in Kansas City, Missouri July 21 to 24, 2022. This symposium, sponsored by the American Society for Biochemistry and Molecular Biology (ASBMB), featured experts in gene regulation and evolutionary biology. Topic areas covered enhancer evolution, the cis-regulatory code, and regulatory variation, with an overall focus on bringing the power of deep learning (DL) to decipher DNA sequence information. DL is a machine learning method that uses neural networks to learn complex rules that make predictions about diverse types of data. When DL models are trained to predict genomic data from DNA sequence information, their high prediction accuracy allows the identification of impactful genetic variants within and across species. In addition, the learned sequence rules can be extracted from the model and provide important clues about the mechanistic underpinnings of the cis-regulatory code.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Genômica , Redes Neurais de Computação , Expressão Gênica
3.
PLoS Genet ; 17(11): e1009668, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807910

RESUMO

The Spt/Ada-Gcn5 Acetyltransferase (SAGA) coactivator complex has multiple modules with different enzymatic and non-enzymatic functions. How each module contributes to gene expression is not well understood. During Drosophila oogenesis, the enzymatic functions are not equally required, which may indicate that different genes require different enzymatic functions. An analogy for this phenomenon is the handyman principle: while a handyman has many tools, which tool he uses depends on what requires maintenance. Here we analyzed the role of the non-enzymatic core module during Drosophila oogenesis, which interacts with TBP. We show that depletion of SAGA-specific core subunits blocked egg chamber development at earlier stages than depletion of enzymatic subunits. These results, as well as additional genetic analyses, point to an interaction with TBP and suggest a differential role of SAGA modules at different promoter types. However, SAGA subunits co-occupied all promoter types of active genes in ChIP-seq and ChIP-nexus experiments, and the complex was not specifically associated with distinct promoter types in the ovary. The high-resolution genomic binding profiles were congruent with SAGA recruitment by activators upstream of the start site, and retention on chromatin by interactions with modified histones downstream of the start site. Our data illustrate that a distinct genetic requirement for specific components may conceal the fact that the entire complex is physically present and suggests that the biological context defines which module functions are critical.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Histona Acetiltransferases/metabolismo , Oogênese/fisiologia , Regiões Promotoras Genéticas , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histona Acetiltransferases/genética , Oogênese/genética
4.
Mol Syst Biol ; 17(2): e9866, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33543829

RESUMO

Core promoter types differ in the extent to which RNA polymerase II (Pol II) pauses after initiation, but how this affects their tissue-specific gene expression characteristics is not well understood. While promoters with Pol II pausing elements are active throughout development, TATA promoters are highly active in differentiated tissues. We therefore used a genomics approach on late-stage Drosophila embryos to analyze the properties of promoter types. Using tissue-specific Pol II ChIP-seq, we found that paused promoters have high levels of paused Pol II throughout the embryo, even in tissues where the gene is not expressed, while TATA promoters only show Pol II occupancy when the gene is active. The promoter types are associated with different chromatin accessibility in ATAC-seq data and have different expression characteristics in single-cell RNA-seq data. The two promoter types may therefore be optimized for different properties: paused promoters show more consistent expression when active, while TATA promoters have lower background expression when inactive. We propose that tissue-specific genes have evolved to use two different strategies for their differential expression across tissues.


Assuntos
Drosophila melanogaster/embriologia , Perfilação da Expressão Gênica/métodos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única , TATA Box
5.
Genes Dev ; 28(14): 1550-5, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958592

RESUMO

The TCT core promoter element is present in most ribosomal protein (RP) genes in Drosophila and humans. Here we show that TBP (TATA box-binding protein)-related factor TRF2, but not TBP, is required for transcription of the TCT-dependent RP genes. In cells, TCT-dependent transcription, but not TATA-dependent transcription, increases or decreases upon overexpression or depletion of TRF2. In vitro, purified TRF2 activates TCT but not TATA promoters. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) experiments revealed the preferential localization of TRF2 at TCT versus TATA promoters. Hence, a specialized TRF2-based RNA polymerase II system functions in the synthesis of RPs and complements the RNA polymerase I and III systems.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Transcrição Gênica/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Expressão Gênica , Regiões Promotoras Genéticas , Transporte Proteico , TATA Box/genética , Proteína de Ligação a TATA-Box/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(8): 1807-1812, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432195

RESUMO

The HMG-box protein Capicua (Cic) is a conserved transcriptional repressor that functions downstream of receptor tyrosine kinase (RTK) signaling pathways in a relatively simple switch: In the absence of signaling, Cic represses RTK-responsive genes by binding to nearly invariant sites in DNA, whereas activation of RTK signaling down-regulates Cic activity, leading to derepression of its targets. This mechanism controls gene expression in both Drosophila and mammals, but whether Cic can also function via other regulatory mechanisms remains unknown. Here, we characterize an RTK-independent role of Cic in regulating spatially restricted expression of Toll/IL-1 signaling targets in Drosophila embryogenesis. We show that Cic represses those targets by binding to suboptimal DNA sites of lower affinity than its known consensus sites. This binding depends on Dorsal/NF-κB, which translocates into the nucleus upon Toll activation and binds next to the Cic sites. As a result, Cic binds to and represses Toll targets only in regions with nuclear Dorsal. These results reveal a mode of Cic regulation unrelated to the well-established RTK/Cic depression axis and implicate cooperative binding in conjunction with low-affinity binding sites as an important mechanism of enhancer regulation. Given that Cic plays a role in many developmental and pathological processes in mammals, our results raise the possibility that some of these Cic functions are independent of RTK regulation and may depend on cofactor-assisted DNA binding.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas HMGB/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Drosophila/embriologia , Drosophila/enzimologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/genética , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Receptores Proteína Tirosina Quinases/genética , Proteínas Repressoras/genética , Receptores Toll-Like/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Genome Res ; 27(1): 64-74, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979994

RESUMO

Histone modifications are frequently used as markers for enhancer states, but how to interpret enhancer states in the context of embryonic development is not clear. The poised enhancer signature, involving H3K4me1 and low levels of H3K27ac, has been reported to mark inactive enhancers that are poised for future activation. However, future activation is not always observed, and alternative reasons for the widespread occurrence of this enhancer signature have not been investigated. By analyzing enhancers during dorsal-ventral (DV) axis formation in the Drosophila embryo, we find that the poised enhancer signature is specifically generated during patterning in the tissue where the enhancers are not induced, including at enhancers that are known to be repressed by a transcriptional repressor. These results suggest that, rather than serving exclusively as an intermediate step before future activation, the poised enhancer state may be a mark for spatial regulation during tissue patterning. We discuss the possibility that the poised enhancer state is more generally the result of repression by transcriptional repressors.


Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Transcrição Gênica , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Repressão Epigenética/genética , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas/genética , Histona-Lisina N-Metiltransferase/genética , Fatores de Transcrição/genética
8.
Genome Res ; 27(9): 1501-1512, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28784834

RESUMO

Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins.


Assuntos
Proteínas de Homeodomínio/genética , Mapas de Interação de Proteínas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Cromatina/genética , Genoma/genética , Camundongos , Células-Tronco Embrionárias Murinas , Ligação Proteica/genética , Proteômica
9.
Dev Biol ; 432(1): 151-164, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982536

RESUMO

Hoxa1 has important functional roles in neural crest specification, hindbrain patterning and heart and ear development, yet the enhancers and genes that are targeted by Hoxa1 are largely unknown. In this study, we performed a comprehensive analysis of Hoxa1 target genes using genome-wide Hoxa1 binding data in mouse ES cells differentiated with retinoic acid (RA) into neural fates in combination with differential gene expression analysis in Hoxa1 gain- and loss-of-function mouse and zebrafish embryos. Our analyses reveal that Hoxa1-bound regions show epigenetic marks of enhancers, occupancy of Hox cofactors and differential expression of nearby genes, suggesting that these regions are enriched for enhancers. In support of this, 80 of them mapped to regions with known reporter activity in transgenic mouse embryos based on the Vista enhancer database. Two additional enhancers in Dok5 and Wls1 were shown to mediate neural expression in developing mouse and zebrafish. Overall, our analysis of the putative target genes indicate that Hoxa1 has input to components of major signaling pathways, including Wnt, TGF-ß, Hedgehog and Hippo, and frequently does so by targeting multiple components of a pathway such as secreted inhibitors, ligands, receptors and down-stream components. We also identified genes implicated in heart and ear development, neural crest migration and neuronal patterning and differentiation, which may underlie major Hoxa1 mutant phenotypes. Finally, we found evidence for a high degree of evolutionary conservation of many binding regions and downstream targets of Hoxa1 between mouse and zebrafish. Our genome-wide analyses in ES cells suggests that we have enriched for in vivo relevant target genes and pathways associated with functional roles of Hoxa1 in mouse development.


Assuntos
Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/genética , Neurônios/fisiologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Redes Reguladoras de Genes , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Crista Neural/citologia , Neurônios/citologia , Neurônios/metabolismo , Gravidez , Rombencéfalo/citologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Tretinoína/metabolismo , Peixe-Zebra
10.
Genome Res ; 25(11): 1703-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26335633

RESUMO

The Drosophila genome activator Vielfaltig (Vfl), also known as Zelda (Zld), is thought to prime enhancers for activation by patterning transcription factors (TFs). Such priming is accompanied by increased chromatin accessibility, but the mechanisms by which this occurs are poorly understood. Here, we analyze the effect of Zld on genome-wide nucleosome occupancy and binding of the patterning TF Dorsal (Dl). Our results show that early enhancers are characterized by an intrinsically high nucleosome barrier. Zld tackles this nucleosome barrier through local depletion of nucleosomes with the effect being dependent on the number and position of Zld motifs. Without Zld, Dl binding decreases at enhancers and redistributes to open regions devoid of enhancer activity. We propose that Zld primes enhancers by lowering the high nucleosome barrier just enough to assist TFs in accessing their binding motifs and promoting spatially controlled enhancer activation if the right patterning TFs are present. We envision that genome activators in general will utilize this mechanism to activate the zygotic genome in a robust and precise manner.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Estudos de Associação Genética , Proteínas Nucleares , Nucleossomos/genética , Regiões Promotoras Genéticas , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética , Ativação Transcricional
11.
Development ; 141(6): 1179-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24595285

RESUMO

The rapid expansion of genomics methods has enabled developmental biologists to address fundamental questions of developmental gene regulation on a genome-wide scale. These efforts have demonstrated that transcription of developmental control genes by RNA polymerase II (Pol II) is commonly regulated at the transition to productive elongation, resulting in the promoter-proximal accumulation of transcriptionally engaged but paused Pol II prior to gene induction. Here we review the mechanisms and possible functions of Pol II pausing and their implications for development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , RNA Polimerase II/metabolismo , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Genes de Insetos , Regiões Promotoras Genéticas , Elongação da Transcrição Genética
12.
Bioessays ; 37(10): 1042-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26354485

RESUMO

St. Louis and its famous Gateway Arch were the setting of the Special Symposium: Evolution and Core Processes in Gene Regulation, sponsored by the American Society for Biochemistry and Molecular Biology. Biochemists and evolutionary biologists highlighted growing connections between studies of biochemical mechanism and natural selection on gene expression.


Assuntos
Pesquisa Biomédica/tendências , Evolução Molecular , Regulação da Expressão Gênica , Animais , Bioquímica , Congressos como Assunto , Código Genético , Humanos , Missouri , Biologia Molecular , Recursos Humanos
13.
Mol Biol Evol ; 31(6): 1375-90, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24509725

RESUMO

Throughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene yes-associated protein (Yap)/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Evolução Molecular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/genética , Animais , Sequência de Bases , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Olho/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mamíferos/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Estrutura Terciária de Proteína , Proto-Oncogene Mas , Análise de Sequência de RNA , Transativadores/química , Transativadores/metabolismo , Proteínas de Sinalização YAP
14.
Bioinformatics ; 29(21): 2705-13, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23980024

RESUMO

MOTIVATION: Chromatin immunoprecipitation coupled to next-generation sequencing (ChIP-seq) is widely used to study the in vivo binding sites of transcription factors (TFs) and their regulatory targets. Recent improvements to ChIP-seq, such as increased resolution, promise deeper insights into transcriptional regulation, yet require novel computational tools to fully leverage their advantages. RESULTS: To this aim, we have developed peakzilla, which can identify closely spaced TF binding sites at high resolution (i.e. resolves individual binding sites even if spaced closely), as we demonstrate using semisynthetic datasets, performing ChIP-seq for the TF Twist in Drosophila embryos with different experimental fragment sizes, and analyzing ChIP-exo datasets. We show that the increased resolution reached by peakzilla is highly relevant, as closely spaced Twist binding sites are strongly enriched in transcriptional enhancers, suggesting a signature to discriminate functional from abundant non-functional or neutral TF binding. Peakzilla is easy to use, as it estimates all the necessary parameters from the data and is freely available. AVAILABILITY AND IMPLEMENTATION: The peakzilla program is available from https://github.com/steinmann/peakzilla or http://www.starklab.org/data/peakzilla/. CONTACT: stark@starklab.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Imunoprecipitação da Cromatina/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Humanos , Camundongos , Proteína 1 Relacionada a Twist/metabolismo
15.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585823

RESUMO

Identifying the molecular origins by which new morphological structures evolve is one of the long standing problems in evolutionary biology. To date, vanishingly few examples provide a compelling account of how new morphologies were initially formed, thereby limiting our understanding of how diverse forms of life derived their complex features. Here, we provide evidence that the large projections on the Drosophila eugracilis phallus that are implicated in sexual conflict have evolved through co-option of the trichome genetic network. These unicellular apical projections on the phallus postgonal sheath are reminiscent of trichomes that cover the Drosophila body but are up to 20-fold larger in size. During their development, they express the transcription factor Shavenbaby, the master regulator of the trichome network. Consistent with the co-option of the Shavenbaby network during the evolution of the D. eugracilis projections, somatic mosaic CRISPR/Cas9 mutagenesis shows that shavenbaby is necessary for their proper length. Moreover, mis-expression of Shavenbaby in the sheath of D. melanogaster , a naïve species that lacks these extensions, is sufficient to induce small trichomes. These induced extensions rely on a genetic network that is shared to a large extent with the D. eugracilis projections, indicating its co-option but also some genetic rewiring. Thus, by leveraging a genetically tractable evolutionarily novelty, our work shows that the trichome-forming network is flexible enough that it can be co-opted in a new context, and subsequently refined to produce unique apical projections that are barely recognizable compared to their simpler ancestral beginnings.

16.
Nat Commun ; 14(1): 5862, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735176

RESUMO

While the accessibility of enhancers is dynamically regulated during development, promoters tend to be constitutively accessible and poised for activation by paused Pol II. By studying Lola-I, a Drosophila zinc finger transcription factor, we show here that the promoter state can also be subject to developmental regulation independently of gene activation. Lola-I is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo. This promoter transition is required but not sufficient for tissue-specific target gene activation. Lola-I mediates this function by depleting promoter nucleosomes, similar to the action of pioneer factors at enhancers. These results uncover a level of regulation for promoters that is normally found at enhancers and reveal a mechanism for the de novo establishment of paused Pol II at promoters.


Assuntos
Drosophila , Embrião de Mamíferos , Animais , Regiões Promotoras Genéticas/genética , Drosophila/genética , Desenvolvimento Embrionário , Nucleossomos/genética , RNA Polimerase II/genética
17.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214836

RESUMO

Transcription factors (TF) are proteins that bind DNA in a sequence-specific manner to regulate gene transcription. Despite their unique intrinsic sequence preferences, in vivo genomic occupancy profiles of TFs differ across cellular contexts. Hence, deciphering the sequence determinants of TF binding, both intrinsic and context-specific, is essential to understand gene regulation and the impact of regulatory, non-coding genetic variation. Biophysical models trained on in vitro TF binding assays can estimate intrinsic affinity landscapes and predict occupancy based on TF concentration and affinity. However, these models cannot adequately explain context-specific, in vivo binding profiles. Conversely, deep learning models, trained on in vivo TF binding assays, effectively predict and explain genomic occupancy profiles as a function of complex regulatory sequence syntax, albeit without a clear biophysical interpretation. To reconcile these complementary models of in vitro and in vivo TF binding, we developed Affinity Distillation (AD), a method that extracts thermodynamic affinities de-novo from deep learning models of TF chromatin immunoprecipitation (ChIP) experiments by marginalizing away the influence of genomic sequence context. Applied to neural networks modeling diverse classes of yeast and mammalian TFs, AD predicts energetic impacts of sequence variation within and surrounding motifs on TF binding as measured by diverse in vitro assays with superior dynamic range and accuracy compared to motif-based methods. Furthermore, AD can accurately discern affinities of TF paralogs. Our results highlight thermodynamic affinity as a key determinant of in vivo binding, suggest that deep learning models of in vivo binding implicitly learn high-resolution affinity landscapes, and show that these affinities can be successfully distilled using AD. This new biophysical interpretation of deep learning models enables high-throughput in silico experiments to explore the influence of sequence context and variation on both intrinsic affinity and in vivo occupancy.

18.
Cell Syst ; 14(4): 247-251, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080160

RESUMO

What new questions can we ask about transcriptional regulation given recent developments in large-scale approaches?


Assuntos
Regulação da Expressão Gênica , Regulação da Expressão Gênica/genética
19.
Dev Cell ; 58(19): 1898-1916.e9, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37557175

RESUMO

Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.

20.
Science ; 381(6664): eadd1250, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733848

RESUMO

Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.


Assuntos
Regulação da Expressão Gênica , Repetições de Microssatélites , Fatores de Transcrição , Células Eucarióticas , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ligação Proteica , Humanos , Animais , Saccharomyces cerevisiae , Domínios Proteicos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA