RESUMO
Cyclic GMP-AMP synthase (cGAS) binds pathogenic and other cytoplasmic double-stranded DNA (dsDNA) to catalyze the synthesis of cyclic GMP-AMP (cGAMP), which serves as the secondary messenger to activate the STING pathway and innate immune responses. Emerging evidence suggests that activation of the cGAS pathway is crucial for anti-tumor immunity; however, no effective intervention method targeting cGAS is currently available. Here we report that cGAS is palmitoylated by ZDHHC9 at cysteines 404/405, which promotes the dimerization and activation of cGAS. We further identified that lysophospholipase-like 1 (LYPLAL1) depalmitoylates cGAS to compromise its normal function. As such, inhibition of LYPLAL1 significantly enhances cGAS-mediated innate immune response, elevates PD-L1 expression, and enhances anti-tumor response to PD-1 blockade. Our results therefore reveal that targeting LYPLAL1-mediated cGAS depalmitoylation contributes to cGAS activation, providing a potential strategy to augment the efficacy of anti-tumor immunotherapy.
Assuntos
Neoplasias , Nucleotidiltransferases , Humanos , Nucleotidiltransferases/metabolismo , Imunidade Inata/genética , Neoplasias/genética , Neoplasias/terapia , ImunoterapiaRESUMO
Aging in an individual refers to the temporal change, mostly decline, in the body's ability to meet physiological demands. Biological age (BA) is a biomarker of chronological aging and can be used to stratify populations to predict certain age-related chronic diseases. BA can be predicted from biomedical features such as brain MRI, retinal, or facial images, but the inherent heterogeneity in the aging process limits the usefulness of BA predicted from individual body systems. In this paper, we developed a multimodal Transformer-based architecture with cross-attention which was able to combine facial, tongue, and retinal images to estimate BA. We trained our model using facial, tongue, and retinal images from 11,223 healthy subjects and demonstrated that using a fusion of the three image modalities achieved the most accurate BA predictions. We validated our approach on a test population of 2,840 individuals with six chronic diseases and obtained significant difference between chronological age and BA (AgeDiff) than that of healthy subjects. We showed that AgeDiff has the potential to be utilized as a standalone biomarker or conjunctively alongside other known factors for risk stratification and progression prediction of chronic diseases. Our results therefore highlight the feasibility of using multimodal images to estimate and interrogate the aging process.
Assuntos
Envelhecimento , Fontes de Energia Elétrica , Humanos , Face , Biomarcadores , Doença CrônicaRESUMO
STIP1 homology and U-box protein 1 (STUB1), a crucial member of the RING family E3 ubiquitin ligase, serves dual roles as an oncogene and a tumor suppressor in various human cancers. However, the role and mechanism of STUB1 in clear cell renal cell carcinoma (ccRCC) remain poorly defined. Here, we identified YTHDF1 as a novel STUB1 interaction partner using affinity purification mass spectrometry (AP-MS). Furthermore, we revealed that STUB1 promotes the ubiquitination and degradation of YTHDF1. Consequently, STUB1 depletion leads to YTHDF1 up-regulation in renal cancer cells. Functionally, STUB1 depletion promoted migration and invasion of ccRCC cells in a YTHDF1-dependent manner. Additionally, depletion of STUB1 also increased the tumorigenic potential of ccRCC in a xenograft model. Importantly, STUB1 expression is down-regulated in ccRCC tissues, and its low expression level correlates with advanced tumor stage and poor overall survival in ccRCC patients. Taken together, these findings reveal that STUB1 inhibits the tumorigenicity of ccRCC by regulating YTHDF1 stability.
RESUMO
Bladder cancer (BLCA) exhibits notable molecular heterogeneity, influencing diverse clinical outcomes. However, the molecular subtypes associated with cell differentiation-related genes (CDR) and their prognostic implications remain unexplored. Analysing two GEO single-cell datasets, we identified genes linked to cell differentiation. Utilizing these genes, we explored distinct molecular subtypes. WGCNA analysis further identified CDR-associated genes, and the CDR score system, constructed using Lasso and Cox regression, was developed. Clinical prognosis and variations in immune-related factors among patient groups were assessed. Core genes were selected and confirmed through in vitro experiments. Two BLCA subtypes related to cell differentiation were identified: Subtype B demonstrated a favourable prognosis, while Subtype A exhibited significant immune cell infiltration. The CDR score system of nine genes revealed a positive correlation between higher scores and a poorer prognosis. The comprehensive analysis uncovered a positive association between CDR genes and M2 macrophages and unresponsiveness to immune therapy. Functional experiments validated that ANXA5 downregulation influences tumour cell migration without affecting proliferation. Our study reveals distinct cell differentiation-related molecular subtypes and introduces the CDR scoring system in BLCA. ANXA5 emerges as a potential therapeutic target, offering promising avenues for personalized treatment strategies.
Assuntos
Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , RNA-Seq , Análise de Célula Única , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Diferenciação Celular/genética , Análise de Célula Única/métodos , Prognóstico , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Masculino , Proliferação de Células/genética , Feminino , Análise da Expressão Gênica de Célula ÚnicaRESUMO
BACKGROUND: Prostate leucine zipper (PrLZ) is a prostate-specific protein, and our previous study demonstrated that PrLZ enhances the malignant progression of prostate cancer (Pca). However, the roles of PrLZ in epithelial to mesenchymal transition (EMT) remain unknown. METHODS: Quantitative real-time PCR (qRT-PCR), immunohistochemical (IHC) staining, hematoxylin-eosin (HE) staining, and western blotting were used to analyze the expression of protein and genes level in human PCa cell lines. Invasion assay was used to examine the effect of PrLZ, miR-200a, miR-200b, miR-200c, miR-141, miR-429, miR-205, and ZEB1 on PCa cell line invasion in vitro. Prostate cancer metastasis animal model was designed to assess the effect of PrLZ on PCa cell line invasion in vivo. RESULTS: We proved that high PrLZ expression initiates EMT, which was shown by the downregulation of E-cadherin and upregulation of vimentin in PC-3/PrLZ and ARCaP-E/PrLZ cells. Mechanistic analysis revealed that PrLZ regulates EMT by activating TGF-ß1/p-smad2 signaling and further inhibiting the expression of miR-200 family members, which negatively regulates ZEB1 expression and causes EMT in Pca. Moreover, using two of orthotopic mouse model and tail vein injection of human prostate cancer cells mouse model, we observed that PC-3/PrLZ cells led to the development of distant organ metastases in vivo. CONCLUSIONS: Our results show the mechanism by which PrLZ regulates EMT and metastasis and suggest that PrLZ may be a potential therapeutic target for Pca metastasis.
Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , MicroRNAs/genética , Fator de Crescimento Transformador beta1/metabolismo , Próstata/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Zíper de Leucina , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Neoplasias da Próstata/patologia , Regulação Neoplásica da Expressão Gênica , Movimento CelularRESUMO
The relative free energy perturbation (RFEP) calculation is one of the most theoretically sound computational chemistry approaches for the binding affinity prediction. However, its application is often hindered by the complexity of the calculation choices and the requirement of expertise in the field. Improper lambda scheme of RFEP may result in deviations from an accurate description of the perturbation process and is prone to erroneous affinity predictions. To address such challenges, an automated adaptive lambda method is proposed where the adaptive lambda schemes are obtained through a split-and-merge algorithm based on the pilot runs. The newly established workflow along with a series of improvements to the perturbation settings increases the consistency of the RFEP calculation results. Comparing the pilot and adaptive lambda schemes, the latter demonstrated improvements in convergence and reproducibility and lowered the mean unsigned error and the root-mean-square error. Overall, the adaptive lambda method is a reliable and robust choice to predict small molecule relative binding free energy and can be capitalized to benefit routine RFEP calculations for drug discovery projects.
RESUMO
A series of pentagonal bipyramidal anionic germanium clusters doped with heavy rare earth elements, REGe 6 - (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), have been identified at the PBE0/def2-TZVP level using density functional theory (DFT). Our findings reveal that the centrally doped pentagonal ring structure demonstrates enhanced stability and heightened aromaticity due to its uniform bonding characteristics and a larger charge transfer region. Through natural population analysis and spin density diagrams, we observed a monotonic decrease in the magnetic moment from Gd to Yb. This is attributed to the decreasing number of unpaired electrons in the 4f orbitals of the heavy rare earth atoms. Interestingly, the system doped with Er atoms showed lower stability and anti-aromaticity, likely due to the involvement of the 4f orbitals in bonding. Conversely, the systems doped with Gd and Tb atoms stood out for their high magnetism and stability, making them potential building blocks for rare earth-doped semiconductor materials.
RESUMO
Clinical trials of hypothermia after pediatric cardiac arrest (CA) have not seen robust improvement in functional outcome, possibly because of the long delay in achieving target temperature. Previous work in infant piglets showed that high nasal airflow, which induces evaporative cooling in the nasal mucosa, reduced regional brain temperature uniformly in half the time needed to reduce body temperature. Here, we evaluated whether initiation of hypothermia with high transnasal airflow provides neuroprotection without adverse effects in the setting of asphyxic CA. Anesthetized piglets underwent sham-operated procedures (n = 7) or asphyxic CA with normothermic recovery (38.5°C; n = 9) or hypothermia initiated by surface cooling at 10 (n = 8) or 120 (n = 7) min or transnasal cooling initiated at 10 (n = 7) or 120 (n = 7) min after resuscitation. Hypothermia was sustained at 34°C with surface cooling until 20 h followed by 6 h of rewarming. At 4 days of recovery, significant neuronal loss occurred in putamen and sensorimotor cortex. Transnasal cooling initiated at 10 min significantly rescued the number of viable neurons in putamen, whereas levels in putamen in other hypothermic groups remained less than sham levels. In sensorimotor cortex, neuronal viability in the four hypothermic groups was not significantly different from the sham group. These results demonstrate that early initiation of high transnasal airflow in a pediatric CA model is effective in protecting vulnerable brain regions. Because of its simplicity, portability, and low cost, transnasal cooling potentially could be deployed in the field or emergency room for early initiation of brain cooling after pediatric CA.NEW & NOTEWORTHY The onset of therapeutic hypothermia after cardiac resuscitation is often delayed, leading to incomplete neuroprotection. In an infant swine model of asphyxic cardiac arrest, initiation of high transnasal airflow to maximize nasal evaporative cooling produced hypothermia sufficient to provide neuroprotection that was not inferior to body surface cooling. Because of its simplicity and portability, this technique may be of use in the field or emergency room for rapid brain cooling in pediatric cardiac arrest victims.
Assuntos
Modelos Animais de Doenças , Parada Cardíaca , Hipotermia Induzida , Animais , Hipotermia Induzida/métodos , Parada Cardíaca/terapia , Parada Cardíaca/fisiopatologia , Suínos , Neuroproteção/fisiologia , Animais Recém-Nascidos , Feminino , MasculinoRESUMO
Epiphytic bacteria constitute a vital component of aquatic ecosystems, pivotal in regulating elemental cycling. Despite their significance, the diversity and functions of epiphytic bacterial communities adhering to various submerged macrophytes remain largely unexplored. In this study, we employed a metagenomic approach to investigate the diversity and function of epiphytic bacterial communities associated with six submerged macrophytes: Ceratophyllum demersum, Hydrilla verticillata, Myriophyllum verticillatum, Potamogeton lucens, Stuckenia pectinata, and Najas marina. The results revealed that the predominant epiphytic bacterial species for each plant type included Pseudomonas spp., Microbacterium spp., and Stenotrophomonas rhizophila. Multiple comparisons and linear discriminant analysis effect size indicated a significant divergence in the community composition of epiphytic bacteria among the six submerged macrophytes, with 0.3-1% of species uniquely identified. Epiphytic bacterial richness associated with S. pectinata significantly differed from that of both C. demersum and H. verticillata, although no significant differences were observed in diversity and evenness. Functionally, notable variations were observed in the relative abundances of genes associated with carbon, nitrogen, and phosphorus cycling within epiphytic bacterial communities on the submerged macrophyte hosts. Among these communities, H. verticillata exhibited enrichment in genes related to the 3-hydroxypropionate bicycle and nitrogen assimilation, translocation, and denitrification. Conversely, M. verticillatum showcased enrichment in genes linked to the reductive citric acid cycle (Arnon-Buchanan cycle), reductive pentose phosphate cycle (Calvin cycle), polyphosphate degradation, and organic nitrogen metabolism. In summary, our findings offer valuable insights into the diversity and function of epiphytic bacteria on submerged macrophyte leaves, shedding light on their roles in lake ecosystems.
Assuntos
Ecossistema , Potamogetonaceae , Lagos , Metagenoma , Bactérias/genética , Bactérias/metabolismo , Potamogetonaceae/genética , Potamogetonaceae/microbiologia , Nitrogênio/metabolismoRESUMO
Data-driven machine learning (ML) provides a promising approach to understanding and predicting the rejection of trace organic contaminants (TrOCs) by polyamide (PA). However, various confounding variables, coupled with data scarcity, restrict the direct application of data-driven ML. In this study, we developed a data-knowledge codriven ML model via domain-knowledge embedding and explored its application in comprehending TrOC rejection by PA membranes. Domain-knowledge embedding enhanced both the predictive performance and the interpretability of the ML model. The contribution of key mechanisms, including size exclusion, charge effect, hydrophobic interaction, etc., that dominate the rejections of the three TrOC categories (neutral hydrophilic, neutral hydrophobic, and charged TrOCs) was quantified. Logâ¯D and molecular charge emerge as key factors contributing to the discernible variations in the rejection among the three TrOC categories. Furthermore, we quantitatively compared the TrOC rejection mechanisms between nanofiltration (NF) and reverse osmosis (RO) PA membranes. The charge effect and hydrophobic interactions possessed higher weights for NF to reject TrOCs, while the size exclusion in RO played a more important role. This study demonstrated the effectiveness of the data-knowledge codriven ML method in understanding TrOC rejection by PA membranes, providing a methodology to formulate a strategy for targeted TrOC removal.
Assuntos
Nylons , Purificação da Água , Osmose , Purificação da Água/métodos , Membranas Artificiais , FiltraçãoRESUMO
Rare earth elements have high chemical reactivity, and doping them into semiconductor clusters can induce novel physicochemical properties. The study of the physicochemical mechanisms of interactions between rare earth and tin atoms will enhance our understanding of rare earth functional materials from a microscopic perspective. Hence, the structure, electronic characteristics, stability, and aromaticity of endohedral cages MSn16- (M = Sc, Y, La) have been investigated using a combination of the hybrid PBE0 functional, stochastic kicking, and artificial bee colony global search technology. By comparing the simulated results with experimental photoelectron spectra, it is determined that the most stable structure of these clusters is the Frank-Kasper polyhedron. The doping of atoms has a minimal influence on density of states of the pure tin system, except for causing a widening of the energy gap. Various methods such as ab initio molecular dynamics simulations, the spherical jellium model, adaptive natural density partitioning, localized orbital locator, and electron density difference are employed to analyze the stability of these clusters. The aromaticity of the clusters is examined using iso-chemical shielding surfaces and the gauge-including magnetically induced currents. This study demonstrates that the stability and aromaticity of a tin cage can be systematically adjusted through doping.
RESUMO
In this study, we employ density functional theory along with the artificial bee colony algorithm for cluster global optimization to explore the low-lying structures of TeBnq (n = 3-16, q = 0, -1). The primary focus is on reporting the structural properties of these clusters. The results reveal a consistent doping pattern of the tellurium atom onto the in-plane edges of planar or quasi-planar boron clusters in the most energetically stable isomers. Additionally, we simulate the photoelectron spectra of the cluster anions. Through relative stability analysis, we identify three clusters with magic numbers -TeB7-, TeB10, and TeB12. The aromaticity of these clusters is elucidated using adaptive natural density partitioning (AdNDP) and magnetic properties analysis. Notably, TeB7- exhibits a perfect σ-π doubly aromatic structure, while TeB12 demonstrates strong island aromaticity. These findings significantly contribute to our understanding of the structural and electronic properties of these clusters.
RESUMO
Liver fibrosis remains a global health challenge due to its rapidly rising prevalence and limited treatment options. The orphan nuclear receptor Nur77 has been implicated in regulation of autophagy and liver fibrosis. Targeting Nur77-mediated autophagic flux may thus be a new promising strategy against hepatic fibrosis. In this study, we synthesized four types of Nur77-based thiourea derivatives to determine their anti-hepatic fibrosis activity. Among the synthesized thiourea derivatives, 9e was the most potent inhibitor of hepatic stellate cells (HSCs) proliferation and activation. This compound could directly bind to Nur77 and inhibit TGF-ß1-induced α-SMA and COLA1 expression in a Nur77-dependent manner. In vivo, 9e significantly reduced CCl4-mediated hepatic inflammation response and extracellular matrix (ECM) production, revealing that 9e is capable of blocking the progression of hepatic fibrosis. Mechanistically, 9e induced Nur77 expression and enhanced autophagic flux by inhibiting the mTORC1 signaling pathway in vitro and in vivo. Thus, the Nur77-targeted lead 9e may serve as a promising candidate for treatment of chronic liver fibrosis.
Assuntos
Antifibróticos , Tiossemicarbazonas , Humanos , Tiossemicarbazonas/metabolismo , Células Estreladas do Fígado , Fígado/metabolismo , Cirrose Hepática/metabolismo , Tioureia/metabolismo , Tetracloreto de CarbonoRESUMO
Wetlands are the largest natural sources of methane (CH4) emissions worldwide. Littoral wetlands of urban lakes represent an ecotone between aquatic and terrestrial ecosystems and are strongly influenced by water levels, environmental conditions, and anthropogenic activities. Despite these littoral zones being potential "hotspots" of CH4 emissions, the status of CH4 emissions therein and the role of physicochemical properties and microbial communities regulating these emissions remain unclear. This study compared the CH4 fluxes, physicochemical properties, and CH4-cycling microbial communities (methanogens and methanotrophs) of three zones (a non-flooded supralittoral zone, a semi-flooded eulittoral zone, and a flooded infralittoral zone) in the littoral wetlands of Lake Pipa, Jiangsu Province, China, for two seasons (summer and winter). The eulittoral zone was a CH4 source (median: 11.49 and 0.02 mg m-2 h-1 in summer and winter, respectively), whereas the supralittoral zone acted as a CH4 sink (median: -0.78 and -0.09 mg m-2 h-1 in summer and winter, respectively). The infralittoral zone shifted from CH4 sink to source between the summer (median: -10.65 mg m-2 h-1) and winter (median: 0.11 mg m-2 h-1). The analysis of the functional genes of methanogenesis (mcrA) and methanotrophy (pmoA) and path analysis showed that CH4 fluxes were strongly regulated by biotic factors (abundance of the mcrA gene and alpha diversity of CH4-cycling microbial communities) and abiotic factors (ammonia nitrogen, moisture, and soil organic carbon). In particular, biotic factors had a major influence on the variation in the CH4 flux, whereas abiotic factors had a minor influence. Our findings provide novel insights into the spatial and seasonal variations in CH4-cycling microbial communities and identify the key factors influencing CH4 fluxes in littoral wetlands. These results are important for managing nutrient inputs and regulating the hydrological regimes of urban lakes.
Assuntos
Inundações , Lagos , Metano , Microbiota , Estações do Ano , Áreas Alagadas , Metano/análise , Metano/metabolismo , Lagos/microbiologia , Lagos/química , China , Poluentes Atmosféricos/análise , Monitoramento AmbientalRESUMO
Submerged macrophytes play important roles in nutrient cycling and are widely used in ecological restoration to alleviate eutrophication and improve water quality in lakes. Epiphytic microbial communities on leaves of submerged macrophytes might promote nitrogen cycling, but the mechanisms and quantification of their contributions remain unclear. Here, four types of field zones with different nutrient levels and submerged macrophytes, eutrophic + Vallisneria natans (EV), eutrophic + V. natans + Hydrilla verticillata, mesotrophic + V. natans + H. verticillata, and eutrophic without macrophytes were selected to investigate the microbial communities that involved in nitrification and denitrification. The alpha diversity of bacterial community was higher in the phyllosphere than in the water, and that of H. verticillata was higher compared to V. natans. Bacterial community structures differed significantly between the four zones. The highest relative abundance of dominant bacterioplankton genera involved in nitrification and denitrification was observed in the EV zone. Similarly, the alpha diversity of the epiphytic ammonia-oxidizing archaea and nosZI-type denitrifiers were highest in the EV zone. Consist with the diversity patterns, the potential denitrification rates were higher in the phyllosphere than those in the water. Higher potential denitrification rates in the phyllosphere were also found in H. verticillata than those in V. natans. Anammox was not detected in all samples. Nutrient loads, especially nitrogen concentrations were important factors influencing potential nitrification, denitrification rates, and bacterial communities, especially for the epiphytic nosZI-type taxa. Overall, we observed that the phyllosphere harbors more microbes and promotes higher denitrification rates compared to water, and epiphytic bacterial communities are shaped by nitrogen nutrients and macrophyte species, indicating that epiphytic microorganisms of submerged macrophytes can effectively contribute to the N removal in shallow lakes.
Assuntos
Desnitrificação , Hydrocharitaceae , Nitrogênio , Nitrificação , Bactérias/genética , Organismos Aquáticos , Lagos/microbiologiaRESUMO
Bacteria are diverse and play important roles in biogeochemical cycling of aquatic ecosystems, but the global distribution patterns of bacterial communities in lake sediments across different climate zones are still obscure. Here we integrated the high-throughput sequencing data of 750 sediment samples from published literature to investigate the distribution of bacterial communities in different climate zones and the potential driving mechanisms. The obtained results indicated that the diversity and richness of bacterial community were notably higher in temperate and cold zones than those in other climate zones. In addition, the bacterial community composition varied significantly in different climate zones, which further led to changes in bacterial functional groups. Specifically, the relative abundance of nitrogen cycling functional groups in polar zones was notably higher compared to other climate zones. Regression analysis revealed that climate (mean annual precipitation, MAP; and mean annual temperature, MAT), vegetation, and geography together determined the diversity pattern of sediment bacterial community on a global scale. The results of partial least squares path modeling further demonstrated that climate was the most significant factor affecting the composition and diversity of bacterial communities, and MAP was the most important climate factor affecting the composition of bacteria community (R2 = 0.443, P < 0.001). It is worth noting that a strong positive correlation was observed between the abundance of the dominant bacterial group uncultured_f_Anaerolineaceae and the normalized difference vegetation index (NDVI; P < 0.001), suggesting that vegetation could affect bacterial community diversity by influencing dominant bacterial taxa. This study enhances our understanding of the global diversity patterns and biogeography of sediment bacteria.
RESUMO
PURPOSE: To investigate the feasibility, safety and efficacy of high intensity focused ultrasound ablation (HIFU) as a preoperative treatment for challenging hysteroscopic myomectomies. MATERIALS AND METHODS: A total of 75 patients diagnosed with types 0-III of uterine fibroids were enrolled. Based on the Size, Topography, Extension of the base, Penetration and lateral Wall position (STEPW) classification scoring system, 25 cases with a score ≥ 5 points were treated with HIFU followed by hysteroscopic myomectomy (HIFU + HM group), whereas 50 cases with a score < 5 points were treated with hysteroscopic myomectomy (HM group). RESULTS: The median preoperative STEPW score was 7 in the HIFU + HM group and 2 in the HM group. The average non-perfused volume (NPV) ratio achieved in fibroids after HIFU was 86.87%. Patients in the HIFU + HM group underwent hysteroscopic myomectomy one to four days after HIFU, and downgrading was observed in 81.81% of fibroids. The operation time for patients in the HIFU + HM group was 73 min and the success rate of myomectomy in a single attempt was 60%. The volume of distention medium used during the operation was greater in the HIFU + HM group than in the HM group (15,500 ml vs. 7500 ml). No significant difference was observed between the two groups in terms of intraoperative blood loss, the incidence of intraoperative and postoperative complications, menstrual volume score, or uterine fibroid quality of life score. CONCLUSION: HIFU can be utilized as a preoperative treatment for large submucosal fibroids prior to hysteroscopic myomectomy. HIFU offers a novel approach in the management of this subset of patients.
Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Histeroscopia , Leiomioma , Miomectomia Uterina , Humanos , Feminino , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Adulto , Miomectomia Uterina/métodos , Histeroscopia/métodos , Pessoa de Meia-Idade , Leiomioma/cirurgia , Leiomioma/terapia , Estudos de Viabilidade , Resultado do Tratamento , Neoplasias Uterinas/cirurgiaRESUMO
Alternative splicing (AS) represents a crucial method in mRNA level to regulate gene expression and contributes to the protein complexity. Abnormal splicing has been reported to play roles in several diseases, including cancers. We developed the OncoSplicing database for visualization of survival-associated and differential alternative splicing in 2019. Here, we provide an updated version of OncoSplicing for an integrative view of clinically relevant alternative splicing based on 122 423 AS events across 33 cancers in the TCGA SpliceSeq project and 238 558 AS events across 32 cancers in the TCGA SplAdder project. The new version of the database contains several useful features, such as annotation of alternative splicing-associated transcripts, survival analysis based on median and optimal cut-offs, differential analysis between TCGA tumour samples and adjacent normal samples or GTEx normal samples, pan-cancer views of alternative splicing, splicing differences and results of Cox'PH regression, identification of clinical indicator-relevant and cancer-specific splicing events, and downloadable splicing data in the SplAdder project. Overall, the substantially updated version of OncoSplicing (www.oncosplicing.com) is a user-friendly and registration-free database for browsing and searching clinically relevant alternative splicing in human cancers.
Assuntos
Processamento Alternativo/genética , Bases de Dados Genéticas , Neoplasias/genética , Software , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Neoplasias/patologia , Splicing de RNARESUMO
Benign prostatic hyperplasia (BPH), commonly seen in older men, can cause symptoms of discomfort, and may even need surgical intervention. Studies have shown the potential link between gut microbes and BPH, but the molecular association is not fully understood. METHODS: Four-week-old male Sprague-Dawley rats (n = 16) were randomly allocated to normal control diet (ND, 10% fat) and high-fat diet-induced BPH (HFD, 45% fat) groups. Metagenomic analysis was used to examine the abundance and discrepancies in gut microbiota within the two groups after 24 weeks of feeding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted to assess the biological functions of the differentially expressed genes. RESULTS: Rats with HFD-induced obesity exhibited morphological abnormalities in their prostate tissues. Metagenomic analysis of the gut revealed that Firmicutes were the dominant phyla in the HFD group, whereas the ND group had a higher abundance of Spirochaetes. At the genus level, Ruminococcus spp exhibited greater abundance in the HFD group, whereas Treponema spp were more abundant in the ND group. KEGG analysis demonstrated that the differentially expressed genes were mainly enriched in the NOD-like receptor (NLR) signaling, PI3K-Akt signaling, estrogen-signaling, signalings associated with GABAergic synapses, pantothenate and CoA biosynthesis. CONCLUSION: The findings of our study indicated that there was a notable variation in the microbiota abundance within the intestinal tract of obese rats suffering from prostate hyperplasia. It is plausible that these differentially abundant bacteria played a role in the development of pathological alterations in the prostate through the facilitation of inflammatory responses; however, additional research is required to validate the findings.
RESUMO
Atherosclerosis (AS) and its related cardiovascular diseases (CVDs) remain the most frequent cause of morbidity and mortality worldwide. Researches showed that bisphenol A (BPA) exposure might exacerbate AS progression. However, as an analogue of BPA, little is known about the cardiovascular toxicity of bisphenol S (BPS), especially whether BPS exposure has the pro-atherogenic effects in mammals is still unknown. Here, we firstly constructed an apolipoprotein E knockout (ApoE-/-) mouse model and cultured cells to investigate the risk of BPS on AS and explore the underlying mechanisms. Results showed that prolonged exposure to 50⯵g/kg body weight (bw)/day BPS indeed aggravated AS lesions both in the en face aortas and aortic sinuses of ApoE-/- mice. Moreover, BPS were found to be implicated in the AS pathological process: 1) stimulates adhesion molecule expression to promote monocyte-endothelial cells (ECs) adhesion with 3.6 times more than the control group in vivo; 2) increases the distribution of vascular smooth muscle cells (VSMCs) with 9.3 times more than the control group in vivo, possibly through the migration of VSMCs; and 3) induces an inflammatory response by increasing the number of macrophages (MACs), with 3.7 times more than the control group in vivo, and the release of inflammatory mediators. Furthermore, we have identified eight significant AS-related genes induced by BPS, including angiopoietin-like protein 7 (Angptl17) and lipocalin-2 (Lcn2) in ECs; matrix metalloproteinase 9 (Mmp13), secreted phosphoprotein 1 (Spp1), and collagen type II alpha 1 (Col2a1) in VSMCs; and kininogen 1 (Kng1), integrin alpha X (Itgax), and MAC-expressed gene 1 (Mpeg1) in MACs. Overall, this study firstly found BPS exposure could exacerbate mammalian AS and might also provide a theoretical basis for elucidating BPS and its analogues induced AS and related CVDs.