Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2098, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459034

RESUMO

Yutu-2 rover conducted an exciting expedition on the 41st lunar day to investigate a fin-shaped rock at Longji site (45.44°S, 177.56°E) by extending its locomotion margin on perilous peaks. The varied locomotion encountered, especially multi-form wheel slippage, during the journey to the target rock, established unique conditions for a fin-grained lunar regolith analysis regarding bearing, shear and lateral properties based on terramechanics. Here, we show a tri-aspect characterization of lunar regolith and infer the rock's origin using a digital twin. We estimate internal friction angle within 21.5°-42.0° and associated cohesion of 520-3154 Pa in the Chang'E-4 operational site. These findings suggest shear characteristics similar to Apollo 12 mission samples but notably higher cohesion compared to regolith investigated on most nearside lunar missions. We estimate external friction angle in lateral properties to be within 8.3°-16.5°, which fills the gaps of the lateral property estimation of the lunar farside regolith and serves as a foundational parameter for subsequent engineering verifications. Our in-situ spectral investigations of the target rock unveil its composition of iron/magnesium-rich low-calcium pyroxene, linking it to the Zhinyu crater (45.34°S, 176.15°E) ejecta. Our results indicate that the combination of in-situ measurements with robotics technology in planetary exploration reveal the possibility of additional source regions contributing to the local materials at the Chang'E-4 site, implying a more complicated geological history in the vicinity.

2.
Natl Sci Rev ; 10(6): nwad056, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37181084

RESUMO

The Zhurong rover of the Tianwen-1 mission landed in southern Utopia Planitia, providing a unique window into the evolutionary history of the Martian lowlands. During its first 110 sols, Zhurong investigated and categorized surface targets into igneous rocks, lithified duricrusts, cemented duricrusts, soils and sands. The lithified duricrusts, analysed by using laser-induced breakdown spectroscopy onboard Zhurong, show elevated water contents and distinct compositions from those of igneous rocks. The cemented duricrusts are likely formed via water vapor-frost cycling at the atmosphere-soil interface, as supported by the local meteorological conditions. Soils and sands contain elevated magnesium and water, attributed to both hydrated magnesium salts and adsorbed water. The compositional and meteorological evidence indicates potential Amazonian brine activities and present-day water vapor cycling at the soil-atmosphere interface. Searching for further clues to water-related activities and determining the water source by Zhurong are critical to constrain the volatile evolution history at the landing site.

3.
Nat Commun ; 13(1): 7177, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418346

RESUMO

Ferric iron as well as magnetite are rarely found in lunar samples, and their distribution and formation mechanisms on the Moon have not been well studied. Here, we discover sub-microscopic magnetite particles in Chang'E-5 lunar soil. Magnetite and pure metallic iron particles are embedded in oxygen-dissolved iron-sulfide grains from the Chang'E-5 samples. This mineral assemblage indicates a FeO eutectoid reaction (4FeO = Fe3O4 + Fe) for formation of magnetite. The iron-sulfide grains' morphology features and the oxygen's distribution suggest that a gas-melt phase reaction occurred during large-impact events. This could provide an effective method to form ubiquitous sub-microscopic magnetite in fine lunar soils and be a contributor to the presentation of ferric iron on the surface of the Moon. Additionally, the formation of sub-microscopic magnetite and metallic iron by eutectoid reaction may provide an alternative way for the formation of magnetic anomalies observed on the Moon.

4.
Nat Commun ; 13(1): 5336, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088436

RESUMO

The formation and distribution of lunar surficial water remains ambiguous. Here, we show the prominence of water (OH/H2O) attributed to solar wind implantation on the uppermost surface of olivine, plagioclase, and pyroxene grains from Chang'E-5 samples. The results of spectral and microstructural analyses indicate that solar wind-derived water is affected by exposure time, crystal structure, and mineral composition. Our estimate of a minimum of 170 ppm water content in lunar soils in the Chang'E-5 region is consistent with that reported by the Moon Minerology Mapper and Chang'E-5 lander. By comparing with remote sensing data and through lunar soil maturity analysis, the amount of water in Chang'E-5 provides a reference for the distribution of surficial water in middle latitude of the Moon. We conclude that minerals in lunar soils are important reservoirs of water, and formation and retention of water originating from solar wind occurs on airless bodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA