Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(42): e202400871, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38777795

RESUMO

Calixarenes are displaying great potential for the development of new drug delivery systems, diagnostic imaging, biosensing devices and inhibitors of biological processes. In particular, calixarene derivatives are able to interact with many different enzymes and function as inhibitors. By screening of the potential drug target database (PDTD) with a reverse docking procedure, we identify and discuss a selection of 100 proteins that interact strongly with calix[4]arene. We also discover that leucine (23.5 %), isoleucine (11.3 %), phenylalanines (11.3 %) and valine (9.5 %) are the most frequent binding residues followed by hydrophobic cysteines and methionines and aromatic histidines, tyrosines and tryptophanes. Top binders are peroxisome proliferator-activated receptors that already are targeted by commercial drugs, demonstrating the practical interest in calix[4]arene. Nuclear receptors, potassium channel, several carrier proteins, a variety of cancer-related proteins and viral proteins are prominent in the list. It is concluded that calix[4]arene, which is characterized by facile access, well-defined conformational characteristics, and ease of functionalization at both the lower and higher rims, could be a potential lead compound for the development of enzyme inhibitors and theranostic platforms.


Assuntos
Calixarenos , Simulação de Acoplamento Molecular , Fenóis , Calixarenos/química , Fenóis/química , Fenóis/farmacologia , Humanos , Sítios de Ligação , Ligação Proteica , Proteínas/química , Proteínas/metabolismo
2.
Chemistry ; 29(55): e202301704, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37432093

RESUMO

Semiconducting single walled carbon nanotubes (SWCNTs) are promising materials for biosensing applications with electrolyte-gated transistors (EGT). However, to be employed in EGT devices, SWCNTs often require lengthy solution-processing fabrication techniques. Here, we introduce a simple solution-based method that allows fabricating EGT devices from stable dispersions of SWCNTs/bovine serum albumin (BSA) hybrids in water. The dispersion is then deposited on a substrate allowing the formation of a SWCNTs random network as the semiconducting channel. We demonstrate that this methodology allows the fabrication of EGT devices with electric performances that allow their use in biosensing applications. We demonstrate their application for the detection of cortisol in solution, upon gate electrode functionalization with anti-cortisol antibodies. This is a robust and cost-effective methodology that sets the ground for a SWCNT/BSA-based biosensing platform that allows overcoming many limitations of standard SWCNTs biosensor fabrications.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Soroalbumina Bovina , Técnicas Biossensoriais/métodos , Eletrólitos
3.
Proc Natl Acad Sci U S A ; 116(7): 2452-2457, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30683725

RESUMO

Three 819 knots in closed-loop strands of different lengths (∼20, 23, and 26 nm) were used to experimentally assess the consequences of knot tightness at the molecular level. Through the use of 1H NMR, diffusion-ordered spectroscopy (DOSY), circular dichroism (CD), collision-induced dissociation mass spectrometry (CID-MS) and molecular dynamics (MD) simulations on the different-sized knots, we find that the structure, dynamics, and reactivity of the molecular chains are dramatically affected by the tightness of the knotting. The tautness of entanglement causes differences in conformation, enhances the expression of topological chirality, weakens covalent bonds, inhibits decomplexation events, and changes absorption properties. Understanding the effects of tightening nanoscale knots may usefully inform the design of knotted and entangled molecular materials.

4.
Molecules ; 27(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335283

RESUMO

The persistency of COVID-19 in the world and the continuous rise of its variants demand new treatments to complement vaccines. Computational chemistry can assist in the identification of moieties able to lead to new drugs to fight the disease. Fullerenes and carbon nanomaterials can interact with proteins and are considered promising antiviral agents. Here, we propose the possibility to repurpose fullerenes to clog the active site of the SARS-CoV-2 protease, Mpro. Through the use of docking, molecular dynamics, and energy decomposition techniques, it is shown that C60 has a substantial binding energy to the main protease of the SARS-CoV-2 virus, Mpro, higher than masitinib, a known inhibitor of the protein. Furthermore, we suggest the use of C70 as an innovative scaffold for the inhibition of SARS-CoV-2 Mpro. At odds with masitinib, both C60 and C70 interact more strongly with SARS-CoV-2 Mpro when different protonation states of the catalytic dyad are considered. The binding of fullerenes to Mpro is due to shape complementarity, i.e., vdW interactions, and is aspecific. As such, it is not sensitive to mutations that can eliminate or invert the charges of the amino acids composing the binding pocket. Fullerenic cages should therefore be more effective against the SARS-CoV-2 virus than the available inhibitors such as masinitib, where the electrostatic term plays a crucial role in the binding.


Assuntos
Tratamento Farmacológico da COVID-19 , Fulerenos , Domínio Catalítico , Cisteína Endopeptidases/química , Reposicionamento de Medicamentos , Fulerenos/farmacologia , Humanos , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Proteínas Virais/metabolismo
5.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768997

RESUMO

Molecular dynamics simulations were used to quantitatively investigate the interactions between the twenty proteinogenic amino acids and C60. The conserved amino acid backbone gave a constant energetic interaction ~5.4 kcal mol-1, while the contribution to the binding due to the amino acid side chains was found to be up to ~5 kcal mol-1 for tryptophan but lower, to a point where it was slightly destabilizing, for glutamic acid. The effects of the interplay between van der Waals, hydrophobic, and polar solvation interactions on the various aspects of the binding of the amino acids, which were grouped as aromatic, charged, polar and hydrophobic, are discussed. Although π-π interactions were dominant, surfactant-like and hydrophobic effects were also observed. In the molecular dynamics simulations, the interacting residues displayed a tendency to visit configurations (i.e., regions of the Ramachandran plot) that were absent when C60 was not present. The amino acid backbone assumed a "tepee-like" geometrical structure to maximize interactions with the fullerene cage. Well-defined conformations of the most interactive amino acids (Trp, Arg, Met) side chains were identified upon C60 binding.


Assuntos
Aminoácidos/química , Fulerenos/química , Peptídeos/química , Proteínas/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular
6.
Bioconjug Chem ; 30(3): 808-814, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30616344

RESUMO

The lack of solubility in water and the formation of aggregates hamper many opportunities for technological exploitation of C60. Here, different peptides were designed and synthesized with the aim of monomolecular dispersion of C60 in water. Phenylalanines were used as recognizing moieties, able to interact with C60 through π-π stacking, while a varying number of glycines were used as spacers, to connect the two terminal phenylalanines. The best performance in the dispersion of C60 was obtained with the FGGGF peptidic nanotweezer at a pH of 12. A full characterization of this adduct was carried out. The peptides disperse C60 in water with high efficiency, and the solutions are stable for months both in pure water and in physiological environments. NMR measurements demonstrated the ability of the peptides to interact with C60. AFM measurements showed that C60 is monodispersed. Electrospray ionization mass spectrometry determined a stoichiometry of C60@(FGGGF)4. Molecular dynamics simulations showed that the peptides assemble around the C60 cage, like a candy in its paper wrapper, creating a supramolecular host able to accept C60 in the cavity. The peptide-wrapped C60 is fully biocompatible and the C60 "dark toxicity" is eliminated. C60@(FGGGF)4 shows visible light-induced reactive oxygen species (ROS) generation at physiological saline concentrations and reduction of the HeLa cell viability in response to visible light irradiation.


Assuntos
Materiais Biocompatíveis/química , Fulerenos/química , Peptídeos/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Espécies Reativas de Oxigênio/metabolismo , Água
7.
Acc Chem Res ; 51(1): 3-11, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29227618

RESUMO

Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.


Assuntos
Microscopia Eletrônica de Transmissão , Elétrons , Tamanho da Partícula , Propriedades de Superfície
8.
Biochim Biophys Acta Gen Subj ; 1862(9): 1956-1963, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886279

RESUMO

BACKGROUND: High levels of blood cholesterol are conventionally linked to an increased risk of developing cardiovascular disease (Grundy, 1986). Here we examine the molecular mode of action of natural products with known cholesterol-lowering activity, such as for example the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys. METHODS: Molecular Dynamics simulations are used to gain insight into the formation process of mixed micelles and, correspondingly, how active agents epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys could possibly interfere with it. RESULTS: Self-assembly of physiological micelles occurs on the order of 35-50 ns; most of the structural properties of mixed micelles are unaffected by epigallocatechin gallate or Ile-Ile-Ala-Glu-Lys which integrate into the micellar surface; the diffusive motion of constituting lipids palmitoyl-oleoyl-phosphatidylcholine and cholesterol is significantly down-regulated by both epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys; CONCLUSIONS: The molecular mode of action of natural compounds epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys is a significant down-regulation of the diffusive motion of micellar lipids. GENERAL SIGNIFICANCE: Natural compounds like the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys, lead to a significant down-regulation of the diffusive motion of micellar lipids thereby modulating cholesterol absorption into physiological micelles.


Assuntos
Catequina/análogos & derivados , Colesterol/metabolismo , Micelas , Fragmentos de Peptídeos/química , Chá/química , Catequina/química , Colesterol/química , Humanos
9.
Phys Chem Chem Phys ; 20(8): 5708-5720, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29410990

RESUMO

Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

10.
J Am Chem Soc ; 139(47): 17140-17151, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29145727

RESUMO

Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporal and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.


Assuntos
Micelas , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Nanopartículas/química , Polímeros/química
11.
Phys Chem Chem Phys ; 19(36): 25095-25104, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28880040

RESUMO

We analyze the highly resolved vibronic structure of the low energy (≤200 cm-1) region of the fluorescence and fluorescence excitation spectra of trans-stilbene in supersonic beams. In this spectral region the vibronic structure is associated mainly with vibrational levels of the Ce-Ce torsion (τ) and the au combination of the two Ce-Cph bond twisting (ϕ). We base this analysis on the well-established S0(τ, ϕ) two-dimensional potential energy surface (PES) and on a newly refined S1(τ, ϕ) PES. We obtain vibrational eigenvalues and eigenvectors of the anharmonic S0(τ, ϕ) and S1(τ, ϕ) PES using a numerical procedure based on the Meyer's flexible model [R. Meyer, J. Mol. Spectrosc., 1979, 76, 266]. Then we derive Franck-Condon factors and therefore intensities of the relevant vibronic bands for the S0 → S1 excitation and S1 → S0 fluorescence spectra. Furthermore, we assess the role of the bg combination of the two Ce-Cph bond twisting (ν48) in the structure of the S1 → S0 fluorescence spectra. By the use of these results we are able to assign most of the low energy vibrational levels of the S0 → S1 excitation spectra and of the fluorescence spectra of the emission from several low energy S1 vibronic levels. The good agreement between the observed and the computed vibrational structure of the S0 → S1 and S1 → S0 spectra suggests that the proposed picture of the E1(τ, ϕ) and E0(τ, ϕ) PES, in particular along the coordinate τ governing trans-cis photo-isomerization in S1, is accurate. In S0, the barriers for the Ce[double bond, length as m-dash]Ce torsion and for the au type Ce-Cph bond twisting are 16 080 cm-1 and 3125 cm-1, respectively, while in S1, where the bond orders of the Ce[double bond, length as m-dash]Ce and Ce-Cph bonds are reversed, the two barriers become 1350 cm-1 and 8780 cm-1, respectively.

12.
Anal Chem ; 88(11): 5790-6, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27149003

RESUMO

Enzymatic reactions in complex environments often take place with concentrations of enzyme comparable to that of substrate molecules. Two such cases occur when an enzyme is used to detect low concentrations of substrate/analyte or inside a living cell. Such concentrations do not agree with standard in vitro conditions, aimed at satisfying one of the founding hypotheses of the Michaelis-Menten reaction scheme, MM. It would be desirable to generalize the classical approach and show its applicability to complex systems. A permeable micrometrically structured hydrogel matrix was fabricated by protein cross-linking. Glucose oxidase enzyme (GOx) was embedded in the matrix and used as a prototypical system. The concentration of H2O2 was monitored in time and fitted by an accurate solution of the enzymatic kinetic scheme, which is expressed in terms of simple functions. The approach can also find applications in digital microfluidics and in systems biology where the kinetics response in the linear regimes often employed must be replaced.


Assuntos
Glucose Oxidase/metabolismo , Eletrodos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Cinética , Especificidade por Substrato
13.
Anal Chem ; 88(24): 12330-12338, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28193067

RESUMO

Biorecognition is a central event in biological processes in the living systems that is also widely exploited in technological and health applications. We demonstrate that the Electrolyte Gated Organic Field Effect Transistor (EGOFET) is an ultrasensitive and specific device that allows us to quantitatively assess the thermodynamics of biomolecular recognition between a human antibody and its antigen, namely, the inflammatory cytokine TNFα at the solid/liquid interface. The EGOFET biosensor exhibits a superexponential response at TNFα concentration below 1 nM with a minimum detection level of 100 pM. The sensitivity of the device depends on the analyte concentration, reaching a maximum in the range of clinically relevant TNFα concentrations when the EGOFET is operated in the subthreshold regime. At concentrations greater than 1 nM the response scales linearly with the concentration. The sensitivity and the dynamic range are both modulated by the gate voltage. These results are explained by establishing the correlation between the sensitivity and the density of states (DOS) of the organic semiconductor. Then, the superexponential response arises from the energy-dependence of the tail of the DOS of the HOMO level. From the gate voltage-dependent response, we extract the binding constant, as well as the changes of the surface charge and the effective capacitance accompanying biorecognition at the electrode surface. Finally, we demonstrate the detection of TNFα in human-plasma derived samples as an example for point-of-care application.


Assuntos
Técnicas Biossensoriais/instrumentação , Transistores Eletrônicos , Fator de Necrose Tumoral alfa/sangue , Capacitância Elétrica , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Semicondutores , Termodinâmica
14.
Chemphyschem ; 17(23): 3948-3953, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27643799

RESUMO

LAC (hydroxylactone (1R,5S)-1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one) is one of the most interesting products of the pyrolysis of cellulose and represents a useful chiral building block in organic synthesis. A computational investigation at the DFT level on the mechanism of formation of LAC shows that this species can be obtained following two reaction paths, path A and path B, starting from a well-known pyrolysis product (ascopyrone P). A series of internal rearrangements involving in all cases a proton transfer leads directly to LAC (path B). An alternative path (path A) can be also followed. From this path, via a "gate" connecting the two reaction channels, it is possible to reach path B and form LAC. In both cases, the rate-determining step of the process is the initial keto-enol isomerization. We found that water, which is present in the reaction mixture, "catalyzes" the reaction by assisting the proton transfers present in all the steps of the process. In particular, water lowers the barrier of the rate-determining step that becomes 40.9 kcal mol-1 (79.4 kcal mol-1 in the absence of water). The corresponding computed rate constant is 4.3×10 s-1 at 500 °C, a value which is consistent with the presence of LAC in the absence of metal catalysts. The results of this study on the non-catalyzed process underpin the important role played by water in the formation of pyrolysis products of cellulose where proton transfer is a key mechanistic step.

15.
Soft Matter ; 12(15): 3538-44, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26890581

RESUMO

Drops and biological cells share some morphological features and visco-elastic properties. The modelling of drops by mesoscopic non-atomistic models has been carried out to a high degree of success in recent years. We extend such treatment and discuss a simple, drop-like model to describe the interactions of the outer layer of cells with the surfaces of materials. Cells are treated as active mechanical objects that are able to generate adhesion forces. They appear with their true size and are made of "parcels of fluids" or beads. The beads are described by (very) few quantities/parameters related to fundamental chemical forces such as hydrophilicity and lipophilicity that represent an average of the properties of a patch of material or an area of the cell(s) surface. The investigation of adhesion dynamics, motion of individual cells, and the collective behavior of clusters of cells on materials is possible. In the simulations, the drops become active soft matter objects and different from regular droplets they do not fuse when in contact, their trajectories are not Brownian, and they can be forced "to secrete" molecules, to name some of the properties targeted by the modeling. The behavior that emerges from the simulations allows ascribing some cell properties to their mechanics, which are related to their biological features.


Assuntos
Células/citologia , Modelos Moleculares , Adesão Celular , Agregação Celular , Sobrevivência Celular , Interações Hidrofóbicas e Hidrofílicas , Imagens de Fantasmas , Propriedades de Superfície
16.
Phys Chem Chem Phys ; 18(19): 13604-15, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27141554

RESUMO

Photoelectron spectroscopy is usually described by a simple equation that relates the binding energy of the photoemitted electron, Ebinding, its kinetic energy, Ekinetic, the energy of the ionizing photon, Ephoton, and the work function of the spectrometer, ϕ, Ebinding = Ephoton - Ekinetic - ϕ. Behind this equation there is an extremely rich physics, which we describe here using as an example a relatively simple conjugated molecule, namely coronene. The theoretical analysis of valence band and C1s core level photoemission spectra showed that multiple excitations play an important role in determining the intensities of the final spectrum. An explicit, time-evolving model is applied, which is able to count all possible photo-excitations occurring during the photoemission process, showing that they evolve on a short time-scale, of about 10 fs. The method reveals itself to be a valid approach to reproduce photoemission spectra of polycyclic aromatic hydrocarbons (PAHs).

17.
Chemphyschem ; 16(1): 104-7, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25278041

RESUMO

The short answer to the title question is no. Despite their tremendous complexity, many nanomachines are simply one-dimensional systems undergoing a biased, that is, unidirectional, walk on a two-minima potential energy curve. The initially prepared state, or station, is higher in energy than the final equilibrium state that is reached after overcoming an energy barrier. All chemical reactions comply with this scheme, which does not necessarily imply that a generic chemical reaction is a potential molecular motor. If the barrier is low, the system may walk back and the motion will have a large purely Brownian component. Alternatively, a large distance from the barrier of either of the two stations may introduce a Brownian component. Starting from a general inequality that leverages on the idea that the amount of heat dissipated along the potential energy curve is a good indication of the effectiveness of the biased walk, we provide guidelines for the selection of the features of artificial molecular motors.

18.
J Phys Chem A ; 119(51): 12839-44, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26654289

RESUMO

We present a novel method to calculate energies of nanotube caps with different levels of accuracy and a comprehensive study of its application to the IPR caps of the (10,0) carbon nanotube. The two most stable caps for (10,0) have 42 atoms, an energy of 8.7 eV, and correspond to sections of the third most abundant fullerene, C84. These caps are isoenergetic with a chemically unstable cap with 40 carbon atoms related to a C80 isomer that is also chemically unstable. Energies for the other caps are between 9.3 and 10 eV. A method to calculate cap energetics with fullerenes with an error less than 3% is also presented.

19.
J Chem Phys ; 142(21): 215102, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049526

RESUMO

Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.


Assuntos
Difusão , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidilserinas/química
20.
Acc Chem Res ; 46(11): 2454-63, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23826731

RESUMO

Integrating carbon nanotubes (CNTs) with biological systems to form hybrid functional assemblies is an innovative research area with great promise for medical, nanotechnology, and materials science applications. The specifics of molecular recognition and catalytic activity of proteins combined with the mechanical and electronic properties of CNTs provides opportunities for physicists, chemists, biologists, and materials scientists to understand and develop new nanomachines, sensors, or any of a number of other molecular assemblies. Researchers know relatively little about the structure, function, and spatial orientation of proteins noncovalently adsorbed on CNTs, yet because the interaction of CNTs with proteins depends strongly on the tridimensional structure of the proteins, many of these questions can be answered in simple terms. In this Account, we describe recent research investigating the properties of CNT/protein hybrids. Proteins act to solvate CNTs and may sort them according to diameter or chirality. In turn, CNTs can support and immobilize enzymes, creating functional materials. Additional applications include proteins that assemble ordered hierarchical objects containing CNTs, and CNTs that act as protein carriers for vaccines, for example. Protein/CNT hybrids can form bioscaffolds and can serve as therapeutic and imaging materials. Proteins can detect CNTs or coat them to make them biocompatible. One of the more challenging applications for protein/CNT hybrids is to make CNT substrates for cell growth and neural interfacing applications. The challenge arises from the structures' interactions with living cells, which poses questions surrounding the (nano)toxicology of CNTs and whether and how CNTs can detect biological processes or sense them as they occur. The surface chemistry of CNTs and proteins, including interactions such as π-π stacking interactions, hydrophobic interactions, surfactant-like interactions, and charge-π interactions, governs the wealth of structures, processes, and functions that appear when such different types of molecules interact. Each residue stars in one of two main roles, and understanding which residues are best suited for which type of interaction can lead to the design of new hybrids. Nonlocally, the peptide or protein primary, secondary, and tertiary structures govern the binding of proteins by CNTs. The conjugation of proteins with CNTs presents some serious difficulties both experimentally and culturally (such as bridging the "jargon barrier" across disciplines). The intersection of these fields lies between communities characterized by distinctly different approaches and methodologies. However, the examples of this Account illustrate that when this barrier is overcome, the exploitation of hybrid CNT-protein systems offers great potential.


Assuntos
Nanotubos de Carbono/química , Proteínas/química , Adsorção , Materiais Biocompatíveis , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA