Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 477(20): 4071-4084, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33026061

RESUMO

Hydrolysis of the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) at the cell membrane induces the release of inositol 1,4,5-trisphosphate (IP3) into the cytoplasm and diffusion of diacylglycerol (DAG) through the membrane, respectively. Release of IP3 subsequently increases Ca2+ levels in the cytoplasm, which results in activation of protein kinase C α (PKCα) by Ca2+ and DAG, and finally the translocation of PKCα from the cytoplasm to the membrane. In this study, we developed a metabolic reaction-diffusion framework to simulate PKCα translocation via PIP2 hydrolysis in an endothelial cell. A three-dimensional cell model, divided into membrane and cytoplasm domains, was reconstructed from confocal microscopy images. The associated metabolic reactions were divided into their corresponding domain; PIP2 hydrolysis at the membrane domain resulted in DAG diffusion at the membrane domain and IP3 release into the cytoplasm domain. In the cytoplasm domain, Ca2+ was released from the endoplasmic reticulum, and IP3, Ca2+, and PKCα diffused through the cytoplasm. PKCα bound Ca2+ at, and diffused through, the cytoplasm, and was finally activated by binding with DAG at the membrane. Using our model, we analyzed IP3 and DAG dynamics, Ca2+ waves, and PKCα translocation in response to a microscopic stimulus. We found a qualitative agreement between our simulation results and our experimental results obtained by live-cell imaging. Interestingly, our results suggest that PKCα translocation is dominated by DAG dynamics. This three-dimensional reaction-diffusion mathematical framework could be used to investigate the link between PKCα activation in a cell and cell function.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Diglicerídeos/metabolismo , Células Endoteliais/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais/fisiologia , Animais , Bovinos , Biologia Computacional , Simulação por Computador , Hidrólise , Fosfatos de Inositol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA