Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 95(4): 966-973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37872237

RESUMO

BACKGROUND: Platelets are blood cells responsible for the prevention of blood loss upon vessel wall disruption. It has been demonstrated that platelet functioning differs significantly between adult and pediatric donors. This study aimed to identify potential differences between the protein composition of platelets of pediatric, adolescent, and adult donors. METHODS: Platelet functional testing was conducted with live cell flow cytometry. Using a straightforward approach to platelet washing based on the sequential platelets centrifugation-resuspension, we were able to obtain stable and robust proteomics results, which corresponded to previously published data. RESULTS: We have identified that pediatric donors' platelets have increased amounts of proteins, responsible for mitochondrial activity, proteasome activity, and vesicle transport. Flow cytometry analysis of platelet intracellular signaling and functional responses revealed that platelets of the pediatric donors have diminished granule secretion and increased quiescent platelet calcium concentration and decreased calcium mobilization in response to ADP. We could explain the observed changes in calcium responses by the increased mitochondria protein content, and the changes in granule secretion could be explained by the differences in vesicle transport protein content. CONCLUSIONS: Therefore, we can conclude that the age-dependence of platelet functional responses originates from the difference in platelet protein content. IMPACT: Platelets of infants are known to functionally differ from the platelet of adult donors, although the longevity and persistivity of these differences are debatable. Pediatric donor platelets have enhanced amounts of mitochondrial, proteasomal, and vesicle transport proteins. Platelets of the pediatric donors had increased cytosolic calcium in the resting state, what is explained by the increased numbers of mitochondrial proteins. Infants had decreased platelet granule release, which resolved upon adolescence. Thus, platelets of the infants should be assessed differently from adult platelets. Differences in platelet proteomic contents persisted in adolescent groups, yet, no significant differences in platelet function were observed.


Assuntos
Cálcio , Proteômica , Adulto , Adolescente , Humanos , Criança , Cálcio/metabolismo , Plaquetas/metabolismo , Hemorragia , Hemostasia
2.
J Proteome Res ; 22(6): 1695-1711, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37158322

RESUMO

The proteogenomic search pipeline developed in this work has been applied for reanalysis of 40 publicly available shotgun proteomic datasets from various human tissues comprising more than 8000 individual LC-MS/MS runs, of which 5442 .raw data files were processed in total. This reanalysis was focused on searching for ADAR-mediated RNA editing events, their clustering across samples of different origins, and classification. In total, 33 recoded protein sites were identified in 21 datasets. Of those, 18 sites were detected in at least two datasets, representing the core human protein editome. In agreement with prior artworks, neural and cancer tissues were found to be enriched with recoded proteins. Quantitative analysis indicated that recoding the rate of specific sites did not directly depend on the levels of ADAR enzymes or targeted proteins themselves, rather it was governed by differential and yet undescribed regulation of interaction of enzymes with mRNA. Nine recoding sites conservative between humans and rodents were validated by targeted proteomics using stable isotope standards in the murine brain cortex and cerebellum, and an additional one was validated in human cerebrospinal fluid. In addition to previous data of the same type from cancer proteomes, we provide a comprehensive catalog of recoding events caused by ADAR RNA editing in the human proteome.


Assuntos
Proteogenômica , Proteômica , Humanos , Animais , Camundongos , RNA/metabolismo , Edição de RNA , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteoma/genética , Proteoma/metabolismo , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo
3.
Biochemistry (Mosc) ; 88(10): 1668-1682, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105032

RESUMO

Cataloging human proteins and evaluation of their expression, cellular localization, functions, and potential medical significance are important tasks for the global proteomic community. At present, localization and functions of protein products for almost half of protein-coding genes remain unknown or poorly understood. Investigation of organelle proteomes is a promising approach to uncovering localization and functions of human proteins. Nuclear proteome is of particular interest because many nuclear proteins, e.g., transcription factors, regulate functions that determine cell fate. Meta-analysis of the nuclear proteome, or nucleome, of HL-60 cells treated with all-trans-retinoic acid (ATRA) has shown that the functions and localization of a protein product of the SOWAHD gene are poorly understood. Also, there is no comprehensive information on the SOWAHD gene expression at the protein level. In HL-60 cells, the number of mRNA transcripts of the SOWAHD gene was determined as 6.4 ± 0.7 transcripts per million molecules. Using targeted mass spectrometry, the content of the SOWAHD protein was measured as 0.27 to 1.25 fmol/µg total protein. The half-life for the protein product of the SOWAHD gene determined using stable isotope pulse-chase labeling was ~19 h. Proteomic profiling of the nuclear fraction of HL-60 cells showed that the content of the SOWAHD protein increased during the ATRA-induced granulocytic differentiation, reached the peak value at 9 h after ATRA addition, and then decreased. Nuclear location and involvement of the SOWAHD protein in the ATRA-induced granulocytic differentiation have been demonstrated for the first time.


Assuntos
Proteoma , Proteômica , Humanos , Diferenciação Celular , Células HL-60 , Tretinoína/farmacologia , Granulócitos/metabolismo
4.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614211

RESUMO

A meta-analysis of the results of targeted quantitative screening of human blood plasma was performed to generate a reference standard kit that can be used for health analytics. The panel included 53 of the 296 proteins that form a "stable" part of the proteome of a healthy individual; these proteins were found in at least 70% of samples and were characterized by an interindividual coefficient of variation <40%. The concentration range of the selected proteins was 10−10−10−3 M and enrichment analysis revealed their association with rare familial diseases. The concentration of ceruloplasmin was reduced by approximately three orders of magnitude in patients with neurological disorders compared to healthy volunteers, and those of gelsolin isoform 1 and complement factor H were abruptly reduced in patients with lung adenocarcinoma. Absolute quantitative data of the individual proteome of a healthy and diseased individual can be used as the basis for personalized medicine and health monitoring. Storage over time allows us to identify individual biomarkers in the molecular landscape and prevent pathological conditions.


Assuntos
Proteínas Sanguíneas , Plasma , Proteoma , Humanos , Proteínas Sanguíneas/metabolismo , Ceruloplasmina/metabolismo , Espectrometria de Massas/métodos , Plasma/metabolismo , Proteômica
5.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240343

RESUMO

Mass spectrometry (MS) is one of the main techniques for protein identification. Herein, MS has been employed for the identification of bovine serum albumin (BSA), which was covalently immobilized on the surface of a mica chip intended for investigation by atomic force microscopy (AFM). For the immobilization, two different types of crosslinkers have been used: 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) and dithiobis(succinimidyl propionate) (DSP). According to the data obtained by using an AFM-based molecular detector, the SuccBB crosslinker was more efficient in BSA immobilization than the DSP. The type of crosslinker used for protein capturing has been found to affect the results of MS identification. The results obtained herein can be applied in the development of novel systems intended for the highly sensitive analysis of proteins with molecular detectors.


Assuntos
Soroalbumina Bovina , Microscopia de Força Atômica/métodos , Soroalbumina Bovina/química , Espectrometria de Massas/métodos
6.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203578

RESUMO

This work demonstrates the use of a modified mica to concentrate proteins, which is required for proteomic profiling of blood plasma by mass spectrometry (MS). The surface of mica substrates, which are routinely used in atomic force microscopy (AFM), was modified with a photocrosslinker to allow "irreversible" binding of proteins via covalent bond formation. This modified substrate was called the AFM chip. This study aimed to determine the role of the surface and crosslinker in the efficient concentration of various types of proteins in plasma over a wide concentration range. The substrate surface was modified with a 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) photocrosslinker, activated by UV irradiation. AFM chips were incubated with plasma samples from a healthy volunteer at various dilution ratios (102X, 104X, and 106X). Control experiments were performed without UV irradiation to evaluate the contribution of physical protein adsorption to the concentration efficiency. AFM imaging confirmed the presence of protein layers on the chip surface after incubation with the samples. MS analysis of different samples indicated that the proteomic profile of the AFM-visualized layers contained common and unique proteins. In the working series of experiments, 228 proteins were identified on the chip surface for all samples, and 21 proteins were not identified in the control series. In the control series, a total of 220 proteins were identified on the chip surface, seven of which were not found in the working series. In plasma samples at various dilution ratios, a total of 146 proteins were identified without the concentration step, while 17 proteins were not detected in the series using AFM chips. The introduction of a concentration step using AFM chips allowed us to identify more proteins than in plasma samples without this step. We found that AFM chips with a modified surface facilitate the efficient concentration of proteins owing to the adsorption factor and the formation of covalent bonds between the proteins and the chip surface. The results of our study can be applied in the development of highly sensitive analytical systems for determining the complete composition of the plasma proteome.


Assuntos
Proteínas Sanguíneas , Proteômica , Humanos , Silicatos de Alumínio , Espectrometria de Massas
7.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077272

RESUMO

CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines. Despite a substantial difference in the proliferative activities of cell populations with different levels of CD133 expression, transcriptomic and proteomic profiling revealed only minor distinctions between them. Nonetheless, a further in silico assessment of the differentially expressed transcripts and proteins revealed 16 proteins that could be involved in the regulation of CD133 expression; these were assigned ranks reflecting the apparent extent of their involvement. Among them, the TRIM28 transcription factor had the highest rank. The prominent role of TRIM28 in CD133 expression modulation was confirmed experimentally in the Caco2 cell line clones: the knockout, though not the knockdown, of the TRIM28 gene downregulated CD133. These results for the first time highlight an important role of the TRIM28 transcription factor in the regulation of CD133-associated cancer cell heterogeneity.


Assuntos
Antígeno AC133/genética , Células-Tronco Neoplásicas/citologia , Proteína 28 com Motivo Tripartido/metabolismo , Antígeno AC133/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Proteômica , Fatores de Transcrição/metabolismo
8.
Arch Biochem Biophys ; 698: 108677, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33197431

RESUMO

We investigate the effect of the alcohol-induced increase in the content of CYP2E1 in human liver microsomes (HLM) on the function of CYP3A4. Membrane incorporation of the purified CYP2E1 into HLM considerably increases the rate of metabolism of 7-benzyloxyquinoline (BQ) and attenuates the homotropic cooperativity observed with this CYP3A4-specific substrate. It also eliminates the activating effect of α-naphthoflavone (ANF) seen in some HLM samples. To probe the physiological relevance of these effects, we compared three pooled preparations of HLM from normal donors (HLM-N) with a pooled preparation from ten heavy alcohol consumers (HLM-A). The composition of the P450 pool in all samples was characterized by the mass-spectrometric determination of 11 cytochrome P450 species. The fractional content of CYP2E1 in HLM-A was from 2.0 to 3.4 times higher than in HLM-N. In contrast, the content of CYP3A4 in HLM-A was the lowest among all samples. Despite that, HLM-A exhibited a much higher metabolism rate and a lower homotropic cooperativity with BQ, similar to CYP2E1-enriched HLM-N. To substantiate the involvement of interactions between CYP2E1 and CYP3A4 in these effects, we probed hetero-association of these proteins in CYP3A4-containing Supersomes™ with a technique employing CYP2E1 labeled with BODIPY-618 maleimide. These experiments evinced the interactions between the two enzymes and revealed an inhibitory effect of ANF on their association. Our results demonstrate that the functional properties of CYP3A4 are fundamentally dependent on the composition of the cytochrome P450 ensemble and suggest a possible impact of chronic alcohol exposure on the pharmacokinetics of drugs metabolized by CYP3A4.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Etanol/toxicidade , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Sequência de Aminoácidos , Amitriptilina/metabolismo , Benzoflavonas/farmacologia , Citocromo P-450 CYP2E1/análise , Citocromo P-450 CYP3A/análise , Ativadores de Enzimas/farmacologia , Feminino , Humanos , Ivermectina/metabolismo , Masculino , Midazolam/metabolismo , Nitrofenóis/metabolismo , Quinolinas/metabolismo
9.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204832

RESUMO

In vitro models are often used for studying macrophage functions, including the process of phagocytosis. The application of primary macrophages has limitations associated with the individual characteristics of animals, which can lead to insufficient standardization and higher variability of the obtained results. Immortalized cell lines do not have these disadvantages, but their responses to various signals can differ from those of the living organism. In the present study, a comparative proteomic analysis of immortalized PMJ2-R cell line and primary peritoneal macrophages isolated from C57BL/6 mice was performed. A total of 4005 proteins were identified, of which 797 were quantified. Obtained results indicate significant differences in the abundances of many proteins, including essential proteins associated with the process of phagocytosis, such as Elmo1, Gsn, Hspa8, Itgb1, Ncf2, Rac2, Rack1, Sirpa, Sod1, C3, and Msr1. These findings indicate that outcomes of studies utilizing PMJ2-R cells as a model of peritoneal macrophages should be carefully validated. All MS data are deposited in ProteomeXchange with the identifier PXD022133.


Assuntos
Macrófagos Peritoneais/metabolismo , Proteoma/metabolismo , Proteômica , Animais , Células Cultivadas , Regulação para Baixo , Ontologia Genética , Masculino , Camundongos Endogâmicos C57BL , Fagocitose , Mapas de Interação de Proteínas , Regulação para Cima
10.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684727

RESUMO

The proteins of extracellular vesicles (EVs) that originate from tumors reflect the producer cells' proteomes and can be detected in biological fluids. Thus, EVs provide proteomic signatures that are of great interest for screening and predictive cancer diagnostics. By applying targeted mass spectrometry with stable isotope-labeled peptide standards, we assessed the levels of 28 EV-associated proteins, including the conventional exosome markers CD9, CD63, CD81, CD82, and HSPA8, in vesicles derived from the lung cancer cell lines NCI-H23 and A549. Furthermore, we evaluated the detectability of these proteins and their abundance in plasma samples from 34 lung cancer patients and 23 healthy volunteers. The abundance of TLN1, TUBA4A, HSPA8, ITGB3, TSG101, and PACSIN2 in the plasma of lung cancer patients was measured using targeted mass spectrometry and compared to that in plasma from healthy volunteers. The most diagnostically potent markers were TLN1 (AUC, 0.95), TUBA4A (AUC, 0.91), and HSPA8 (AUC, 0.88). The obtained EV proteomic signature allowed us to distinguish between the lung adenocarcinoma and squamous cell carcinoma histological types. The proteomic cargo of the extracellular vesicles represents a promising source of potential biomarkers.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Idoso , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Exossomos/metabolismo , Vesículas Extracelulares/fisiologia , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Plasma/química , Proteoma/metabolismo , Proteômica/métodos
11.
J Proteome Res ; 19(10): 4046-4060, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32866021

RESUMO

Adenosine-to-inosine RNA editing is an enzymatic post-transcriptional modification which modulates immunity and neural transmission in multicellular organisms. In particular, it involves editing of mRNA codons with the resulting amino acid substitutions. We identified such sites for developmental proteomes of Drosophila melanogaster at the protein level using available data for 15 stages of fruit fly development from egg to imago and 14 time points of embryogenesis. In total, 40 sites were obtained, each belonging to a unique protein, including four sites related to embryogenesis. The interactome analysis has revealed that the majority of the editing-recoded proteins were associated with synaptic vesicle trafficking and actomyosin organization. Quantitation data analysis suggested the existence of a phase-specific RNA editing regulation with yet unknown mechanisms. These findings supported the transcriptome analysis results, which showed that a burst in the RNA editing occurs during insect metamorphosis from pupa to imago. Finally, targeted proteomic analysis was performed to quantify editing-recoded and genomically encoded versions of five proteins in brains of larvae, pupae, and imago insects, which showed a clear tendency toward an increase in the editing rate for each of them. These results will allow a better understanding of the protein role in physiological effects of RNA editing.


Assuntos
Proteínas de Drosophila , Edição de RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inosina/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , RNA Mensageiro/genética
12.
J Proteome Res ; 19(12): 4901-4906, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33202127

RESUMO

One of the main goals of the Chromosome-Centric Human Proteome Project (C-HPP) is detection of "missing proteins" (PE2-PE4). Using the UPS2 (Universal proteomics standard 2) set as a model to simulate the range of protein concentrations in the cell, we have previously shown that 2D fractionation enables the detection of more than 95% of UPS2 proteins in a complex biological mixture. In this study, we propose a novel experimental workflow for protein detection during the analysis of biological samples. This approach is extremely important in the context of the C-HPP and the neXt-MP50 Challenge, which can be solved by increasing the sensitivity and the coverage of the proteome encoded by a particular human chromosome. In this study, we used 2D fractionation for in-depth analysis of the proteins encoded by human chromosome 18 (Chr 18) in the HepG2 cell line. Use of 2D fractionation increased the sensitivity of the SRM SIS method by 1.3-fold (68 and 88 proteins were identified by 1D fractionation and 2D fractionation, respectively) and the shotgun MS/MS method by 2.5-fold (21 and 53 proteins encoded by Chr 18 were detected by 1D fractionation and 2D fractionation, respectively). The results of all experiments indicate that 111 proteins encoded by human Chr 18 have been identified; this list includes 42% of the Chr 18 protein-coding genes and 67% of the Chr 18 transcriptome species (Illumina RNaseq) in the HepG2 cell line obtained using a single sample. Corresponding mRNAs were not registered for 13 of the detected proteins. The combination of 2D fractionation technology with SRM SIS and shotgun mass spectrometric analysis did not achieve full coverage, i.e., identification of at least one protein product for each of the 265 protein-coding genes of the selected chromosome. To further increase the sensitivity of the method, we plan to use 5-10 crude synthetic peptides for each protein to identify the proteins and select one of the peptides based on the obtained mass spectra for the synthesis of an isotopically labeled standard for subsequent quantitative analysis. Data are available via ProteomeXchange with the identifier PXD019263.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromossomos Humanos , Humanos , Proteoma/genética , Transcriptoma
14.
BMC Genomics ; 21(1): 331, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349672

RESUMO

BACKGROUND: Salivary cell secretion (SCS) plays a critical role in blood feeding by medicinal leeches, making them of use for certain medical purposes even today. RESULTS: We annotated the Hirudo medicinalis genome and performed RNA-seq on salivary cells isolated from three closely related leech species, H. medicinalis, Hirudo orientalis, and Hirudo verbana. Differential expression analysis verified by proteomics identified salivary cell-specific gene expression, many of which encode previously unknown salivary components. However, the genes encoding known anticoagulants have been found to be expressed not only in salivary cells. The function-related analysis of the unique salivary cell genes enabled an update of the concept of interactions between salivary proteins and components of haemostasis. CONCLUSIONS: Here we report a genome draft of Hirudo medicinalis and describe identification of novel salivary proteins and new homologs of genes encoding known anticoagulants in transcriptomes of three medicinal leech species. Our data provide new insights in genetics of blood-feeding lifestyle in leeches.


Assuntos
Genoma , Hirudo medicinalis/genética , Proteínas e Peptídeos Salivares/genética , Animais , Anticoagulantes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hirudo medicinalis/metabolismo , Sanguessugas/classificação , Sanguessugas/genética , Sanguessugas/metabolismo , Proteômica , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
15.
Xenobiotica ; 50(12): 1393-1405, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32662751

RESUMO

We closely characterized 7-Dimethylamino-4-trifluromethylcoumarin (Coumarin 152, C152), a substrate metabolized by multiple P450 species, to establish a new fluorogenic probe for the studies of functional integration in the cytochrome P450 ensemble. Scanning fluorescence spectroscopy and LC/MS-MS were used to characterize the products of N-demethylation of C152 and optimize their fluorometric detection. The metabolism of C152 by the individual P450 species was characterized using the microsomes containing cDNA-expressed enzymes. C152 metabolism in human liver microsomes (HLM) was studied in a preparation with quantified content of eleven P450 species. C152 is metabolized by CYP2B6, CYP3A4, CYP3A5, CYP2C19, CYP1A2, CYP2C9, and CYP2C8 listed in the order of decreasing turnover. The affinities exhibited by CYP3A5, CYP2C9, and CYP2C8 were lower than those characteristic to the other enzymes. The presumption of additivity suggests the participation of CYP3A4, CYP2B6, and CYP2C19 to be 84, 8, and 0.2%, respectively. Contrary to this prediction, inhibitory analysis identified CYP2C19 as the principal C152-metabolizing enzyme. We thoroughly characterize C152 for the studies of drug metabolism in HLM and demonstrate the limitations of the proportional projection approach by providing an example, where the involvement of individual P450 species cannot be predicted from their content.


Assuntos
Cumarínicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Taxa de Depuração Metabólica/fisiologia , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos
16.
Biochem J ; 476(23): 3661-3685, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31750875

RESUMO

In this study, we investigate the ability of ethanol-inducible CYP2E1 to interact with other cytochrome P450 species and affect the metabolism of their substrates. As a model system, we used CYP2E1-enriched human liver microsomes (HLM) obtained by the incorporation of purified CYP2E1. Using a technique based on homo-FRET in oligomers of CYP2E1 labeled with BODIPY 577/618 maleimide we demonstrated that the interactions of CYP2E1 with HLM result in the formation of its mixed oligomers with other P450 species present in the microsomal membrane. Incorporation of CYP2E1 results in a multifold increase in the rate of metabolism of CYP2E1-specific substrates p-Nitrophenol and Chlorzaxozone. The rate of their oxidation remains proportional to the amount of incorporated CYP2E1 up to the content of 0.3-0.4 nmol/mg protein (or ∼50% CYP2E1 in the P450 pool). The incorporated CYP2E1 becomes a fully functional member of the P450 ensemble and do not exhibit any detectable functional differences with the endogenous CYP2E1. Enrichment of HLM with CYP2E1 results in pronounced changes in the metabolism of 7-ethoxy-4-cyanocoumarin (CEC), the substrate of CYP2C19 and CYP1A2 suggesting an increase in the involvement of the latter in its metabolism. This effect goes together with an augmentation of the rate of dealkylation of CYP1A2-specific substrate 7-ethoxyresorufin. Furthermore, probing the interactions of CYP2E1 with model microsomes containing individual P450 enzymes we found that CYP2E1 efficiently interacts with CYP1A2, but lacks any ability to form complexes with CYP2C19. This finding goes inline with CYP2E1-induced redirection of the main route of CEC metabolism from CYP2C19 to CYP1A2.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Microssomos Hepáticos/metabolismo , Membrana Celular/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Remoção de Radical Alquila , Escherichia coli/metabolismo , Feminino , Humanos , Fígado/citologia , Masculino , Espectrometria de Massas , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxazinas/metabolismo , Oxirredução , Espectrometria de Fluorescência , Especificidade por Substrato , Doadores de Tecidos
17.
J Proteome Res ; 18(12): 4206-4214, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31599598

RESUMO

This manuscript collects all the efforts of the Russian Consortium, bottlenecks revealed in the course of the C-HPP realization, and ways of their overcoming. One of the main bottlenecks in the C-HPP is the insufficient sensitivity of proteomic technologies, hampering the detection of low- and ultralow-copy number proteins forming the "dark part" of the human proteome. In the frame of MP-Challenge, to increase proteome coverage we suggest an experimental workflow based on a combination of shotgun technology and selected reaction monitoring with two-dimensional alkaline fractionation. Further, to detect proteins that cannot be identified by such technologies, nanotechnologies such as combined atomic force microscopy with molecular fishing and/or nanowire detection may be useful. These technologies provide a powerful tool for single molecule analysis, by analogy with nanopore sequencing during genome analysis. To systematically analyze the functional features of some proteins (CP50 Challenge), we created a mathematical model that predicts the number of proteins differing in amino acid sequence: proteoforms. According to our data, we should expect about 100 000 different proteoforms in the liver tissue and a little more in the HepG2 cell line. The variety of proteins forming the whole human proteome significantly exceeds these results due to post-translational modifications (PTMs). As PTMs determine the functional specificity of the protein, we propose using a combination of gene-centric transcriptome-proteomic analysis with preliminary fractionation by two-dimensional electrophoresis to identify chemically modified proteoforms. Despite the complexity of the proposed solutions, such integrative approaches could be fruitful for MP50 and CP50 Challenges in the framework of the C-HPP.


Assuntos
Proteínas/análise , Proteoma , Proteômica/métodos , Técnicas Biossensoriais , Eletroforese em Gel Bidimensional , Genoma Humano , Humanos , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Processamento de Proteína Pós-Traducional , Proteínas/isolamento & purificação , Federação Russa , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fluxo de Trabalho
18.
J Proteome Res ; 18(1): 120-129, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30480452

RESUMO

This work continues the series of the quantitative measurements of the proteins encoded by different chromosomes in the blood plasma of a healthy person. Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards (SRM SIS) and a gene-centric approach, which is the basis for the implementation of the international Chromosome-centric Human Proteome Project (C-HPP), were applied for the quantitative measurement of proteins in human blood plasma. Analyses were carried out in the frame of C-HPP for each protein-coding gene of the four human chromosomes: 18, 13, Y, and mitochondrial. Concentrations of proteins encoded by 667 genes were measured in 54 blood plasma samples of the volunteers, whose health conditions were consistent with requirements for astronauts. The gene list included 276, 329, 47, and 15 genes of chromosomes 18, 13, Y, and the mitochondrial chromosome, respectively. This paper does not make claims about the detection of missing proteins. Only 205 proteins (30.7%) were detected in the samples. Of them, 84, 106, 10, and 5 belonged to chromosomes 18, 13, and Y and the mitochondrial chromosome, respectively. Each detected protein was found in at least one of the samples analyzed. The SRM SIS raw data are available in the ProteomeXchange repository (PXD004374, PASS01192).


Assuntos
Cromossomos Humanos/química , Plasma/química , Proteoma , Cromossomos Humanos/genética , Cromossomos Humanos Par 13/química , Cromossomos Humanos Par 18/química , Cromossomos Humanos Y/química , Bases de Dados de Proteínas , Voluntários Saudáveis , Humanos , Mitocôndrias/ultraestrutura , Proteoma/genética
19.
J Proteome Res ; 17(12): 4085-4096, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30238754

RESUMO

In the boundaries of the chromosome-centric Human Proteome Project (c-HPP) to obtain information about proteoforms coded by chromosome 18, several cell lines (HepG2, glioblastoma, LEH), normal liver, and plasma were analyzed. In our study, we have been using proteoform separation by two-dimensional electrophoresis (2DE) (a sectional analysis) and a semivirtual 2DE with following shotgun mass spectrometry using LC-ESI-MS/MS. Previously, we published a first draft of this research, where only HepG2 cells were tested. Here, we present the next step using more detailed analysis and more samples. Altogether, confident (2 significant sequences minimum) information about proteoforms of 117 isoforms coded by 104 genes of chromosome 18 was obtained. The 3D-graphs showing distribution of different proteoforms from the same gene in the 2D map were generated. Additionally, a semivirtual 2DE approach has allowed for detecting more proteoforms and estimating their pI more precisely. Data are available via ProteomeXchange with identifier PXD010142.


Assuntos
Cromossomos Humanos Par 18/química , Eletroforese em Gel Bidimensional/métodos , Isoformas de Proteínas/análise , Proteoma/análise , Linhagem Celular , Cromatografia Líquida , Simulação por Computador , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem
20.
J Proteome Res ; 17(12): 4258-4266, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30354151

RESUMO

Currently, great interest is paid to the identification of "missing" proteins that have not been detected in any biological material at the protein level (PE1). In this paper, using the Universal Proteomic Standard sets 1 and 2 (UPS1 and UPS2, respectively) as an example, we characterized mass spectrometric approaches from the point of view of sensitivity (Sn), specificity (Sp), and accuracy (Ac). The aim of the paper was to show the utility of a mass spectra approach for protein detection. This sets consists of 48 high-purity human proteins without single aminoacid polymorphism (SAP) or post translational modification (PTM). The UPS1 set consists of the same 48 proteins at 5 pmols each, and in UPS2, proteins were grouped into 5 groups in accordance with their molar concentration, ranging from 10-11 to 10-6 M. Single peptides from the 92% and 96% of all sets of proteins could be detected in a pure solution of UPS2 and UPS1, respectively, by selected reaction monitoring with stable isotope-labeled standards (SRM-SIS). We also found that, in the presence of a biological matrix such as Escherichia coli extract or human blood plasma (HBP), SRM-SIS makes it possible to detect from 63% to 79% of proteins in the UPS2 set (sensitivity) with the highest specificity (∼100%) and an accuracy of 80% by increasing the sensitivity of shotgun and selected reaction monitoring combined with a stable-isotope-labeled peptide standard (SRM-SIS technology) by fractionating samples using reverse-phase liquid chromatography under alkaline conditions (2D-LC_alk). It is shown that this technique of sample fractionation allows the SRM-SIS to detect 98% of the single peptides from the proteins present in the pure solution of UPS2 (47 out of 48 proteins). When the extracts of E. coli or Pichia pastoris are added as biological matrixes to the UPS2, 46, and 45 out of 48 proteins (∼95%) can be detected, respectively, using the SRM-SIS combined with 2D-LC_alk. The combination of the 2D-LC_alk SRM-SIS and shotgun technologies allows us to increase the sensitivity up to 100% in the case of the proteins of the UPS2 set. The usage of that technology can be a solution for identifying the so-called "missing" proteins and, eventually, creating the deep proteome of a particular chromosome of tissue or organs. Experimental data have been deposited in the PeptideAtlas SRM Experiment Library with the dataset identifier PASS01192 and the PRIDE repository with the dataset identifier PXD007643.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/normas , Proteogenômica/métodos , Proteoma/análise , Cromatografia de Fase Reversa/métodos , Cromossomos Humanos/genética , Humanos , Proteínas/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA