Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(6): 1991-2002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549549

RESUMO

As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Ipomoea batatas , Proteínas de Plantas , Raízes de Plantas , Plantas Geneticamente Modificadas , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo
2.
Plant Physiol ; 194(2): 787-804, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815230

RESUMO

Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.


Assuntos
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Estresse Fisiológico/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 191(1): 496-514, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377782

RESUMO

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.


Assuntos
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Chem Inf Model ; 64(8): 3503-3523, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517012

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continuously emerge, an increasing number of mutations are accumulating in the Spike protein receptor-binding domain (RBD) region. Through sequence analysis of various Variants of Concern (VOC), we identified that they predominantly fall within the ο lineage although recent variants introduce any novel mutations in the RBD. Molecular dynamics simulations were employed to compute the binding free energy of these variants with human Angiotensin-converting enzyme 2 (ACE2). Structurally, the binding interface of the ο RBD displays a strong positive charge, complementing the negatively charged binding interface of ACE2, resulting in a significant enhancement in the electrostatic potential energy for the ο variants. Although the increased potential energy is partially offset by the rise in polar solvation free energy, enhanced electrostatic potential contributes to the long-range recognition between the ο variant's RBD and ACE2. We also conducted simulations of glycosylated ACE2-RBD proteins. The newly emerged ο (JN.1) variant has added a glycosylation site at N-354@RBD, which significantly weakened its binding affinity with ACE2. Further, our interaction studies with three monoclonal antibodies across multiple SARS-CoV-2 strains revealed a diminished neutralization efficacy against the ο variants, primarily attributed to the electrostatic repulsion between the antibodies and RBD interface. Considering the characteristics of the ο variant and the trajectory of emerging strains, we propose that newly developed antibodies against SARS-CoV-2 RBD should have surfaces rich in negative potential and, postbinding, exhibit strong van der Waals interactions. These findings provide invaluable guidance for the formulation of future therapeutic strategies.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Evasão da Resposta Imune , Simulação de Dinâmica Molecular , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/virologia , COVID-19/imunologia , Ligação Proteica , Mutação , Eletricidade Estática , Sequência de Aminoácidos , Termodinâmica
5.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396773

RESUMO

Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.


Assuntos
Antocianinas , Ipomoea batatas , Antocianinas/metabolismo , Cloreto de Sódio/farmacologia , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Secas , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Cloreto de Sódio na Dieta/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
6.
J Integr Plant Biol ; 66(2): 176-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38294064

RESUMO

Sweet potato (Ipomoea batatas [L.] Lam.) is a crucial staple and bioenergy crop. Its abiotic stress tolerance holds significant importance in fully utilizing marginal lands. Transcriptional processes regulate abiotic stress responses, yet the molecular regulatory mechanisms in sweet potato remain unclear. In this study, a NAC (NAM, ATAF1/2, and CUC2) transcription factor, IbNAC087, was identified, which is commonly upregulated in salt- and drought-tolerant germplasms. Overexpression of IbNAC087 increased salt and drought tolerance by increasing jasmonic acid (JA) accumulation and activating reactive oxygen species (ROS) scavenging, whereas silencing this gene resulted in opposite phenotypes. JA-rich IbNAC087-OE (overexpression) plants exhibited more stomatal closure than wild-type (WT) and IbNAC087-Ri plants under NaCl, polyethylene glycol, and methyl jasmonate treatments. IbNAC087 functions as a nuclear transcriptional activator and directly activates the expression of the key JA biosynthesis-related genes lipoxygenase (IbLOX) and allene oxide synthase (IbAOS). Moreover, IbNAC087 physically interacted with a RING-type E3 ubiquitin ligase NAC087-INTERACTING E3 LIGASE (IbNIEL), negatively regulating salt and drought tolerance in sweet potato. IbNIEL ubiquitinated IbNAC087 to promote 26S proteasome degradation, which weakened its activation on IbLOX and IbAOS. The findings provide insights into the mechanism underlying the IbNIEL-IbNAC087 module regulation of JA-dependent salt and drought response in sweet potato and provide candidate genes for improving abiotic stress tolerance in crops.


Assuntos
Ciclopentanos , Ipomoea batatas , Oxilipinas , Cloreto de Sódio , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Resistência à Seca , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Radiology ; 307(5): e221157, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37338356

RESUMO

Background Artificial intelligence (AI) models have improved US assessment of thyroid nodules; however, the lack of generalizability limits the application of these models. Purpose To develop AI models for segmentation and classification of thyroid nodules in US using diverse data sets from nationwide hospitals and multiple vendors, and to measure the impact of the AI models on diagnostic performance. Materials and Methods This retrospective study included consecutive patients with pathologically confirmed thyroid nodules who underwent US using equipment from 12 vendors at 208 hospitals across China from November 2017 to January 2019. The detection, segmentation, and classification models were developed based on the subset or complete set of images. Model performance was evaluated by precision and recall, Dice coefficient, and area under the receiver operating characteristic curve (AUC) analyses. Three scenarios (diagnosis without AI assistance, with freestyle AI assistance, and with rule-based AI assistance) were compared with three senior and three junior radiologists to optimize incorporation of AI into clinical practice. Results A total of 10 023 patients (median age, 46 years [IQR 37-55 years]; 7669 female) were included. The detection, segmentation, and classification models had an average precision, Dice coefficient, and AUC of 0.98 (95% CI: 0.96, 0.99), 0.86 (95% CI: 0.86, 0.87), and 0.90 (95% CI: 0.88, 0.92), respectively. The segmentation model trained on the nationwide data and classification model trained on the mixed vendor data exhibited the best performance, with a Dice coefficient of 0.91 (95% CI: 0.90, 0.91) and AUC of 0.98 (95% CI: 0.97, 1.00), respectively. The AI model outperformed all senior and junior radiologists (P < .05 for all comparisons), and the diagnostic accuracies of all radiologists were improved (P < .05 for all comparisons) with rule-based AI assistance. Conclusion Thyroid US AI models developed from diverse data sets had high diagnostic performance among the Chinese population. Rule-based AI assistance improved the performance of radiologists in thyroid cancer diagnosis. © RSNA, 2023 Supplemental material is available for this article.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Feminino , Pessoa de Meia-Idade , Inteligência Artificial , Nódulo da Glândula Tireoide/diagnóstico por imagem , Estudos Retrospectivos
8.
Plant Physiol ; 189(2): 1021-1036, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234946

RESUMO

Soybean (Glycine max) is highly sensitive to photoperiod, which affects flowering time and plant architecture and thus limits the distribution range of elite soybean cultivars. The major maturity gene E1 confers the most prominent effect on photoperiod sensitivity, but its downstream signaling pathway remains largely unknown. Here, we confirm that the encoded E1 protein is a transcriptional repressor. The expression of seven GmMDE genes (Glycine max MADS-box genes downregulated by E1) was suppressed when E1 was overexpressed and promoted when E1 was knocked out through clustered regularly-interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis. These GmMDEs exhibited similar tissue specificity and expression patterns, including in response to photoperiod, E1 expression, and E1 genotype. E1 repressed GmMDE promoter activity. Results for two GmMDEs showed that E1 epigenetically silences their expression by directly binding to their promoters to increase H3K27me3 levels. The overexpression of GmMDE06 promoted flowering and post-flowering termination of stem growth. The late flowering phenotype of E1-overexpressing soybean lines was reversed by the overexpression of GmMDE06, placing GmMDE06 downstream of E1. The overexpression of GmMDE06 increased the expression of the soybean FLOWERING LOCUS T orthologs GmFT2a and GmFT5a, leading to feedback upregulation of GmMDE, indicating that GmMDE and GmFT2a/GmFT5a form a positive regulatory feedback loop promoting flowering. GmMDE06 also promoted post-flowering termination of stem growth by repressing the expression of the shoot identity gene Dt1. The E1-GmMDEs-GmFT2a/5a-Dt1 signaling pathway illustrates how soybean responds to photoperiod by modulating flowering time and post-flowering stem termination.


Assuntos
Glycine max , Fotoperíodo , Florígeno/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
9.
Plant Cell ; 32(4): 1102-1123, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32034034

RESUMO

Cultivated sweet potato (Ipomoea batatas) is an important source of food for both humans and domesticated animals. Here, we show that the B-box (BBX) family transcription factor IbBBX24 regulates the jasmonic acid (JA) pathway in sweet potato. When IbBBX24 was overexpressed in sweet potato, JA accumulation increased, whereas silencing this gene decreased JA levels. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes involved in the JA pathway. IbBBX24 regulates JA responses by antagonizing the JA signaling repressor IbJAZ10, which relieves IbJAZ10's repression of IbMYC2, a JA signaling activator. IbBBX24 binds to the IbJAZ10 promoter and activates its transcription, whereas it represses the transcription of IbMYC2 The interaction between IbBBX24 and IbJAZ10 interferes with IbJAZ10's repression of IbMYC2, thereby promoting the transcriptional activity of IbMYC2. Overexpressing IbBBX24 significantly increased Fusarium wilt disease resistance, suggesting that JA responses play a crucial role in regulating Fusarium wilt resistance in sweet potato. Finally, overexpressing IbBBX24 led to increased yields in sweet potato. Together, our findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.


Assuntos
Ciclopentanos/metabolismo , Resistência à Doença , Fusarium/fisiologia , Ipomoea batatas/imunologia , Ipomoea batatas/microbiologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Acetatos/farmacologia , Sequência de Bases , Ciclopentanos/farmacologia , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Modelos Biológicos , Oxilipinas/farmacologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Nicotiana/genética , Nicotiana/microbiologia , Transcrição Gênica/efeitos dos fármacos
10.
Theor Appl Genet ; 136(3): 56, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912958

RESUMO

KEY MESSAGE: A novel splice-site mutation in the P. vulgarisgene for TETRAKETIDE α-PYRONE REDUCTASE 2 impairs male fertility, and parthenocarpic pod development can be improved by external application of IAA. Snap bean (Phaseolus vulgaris L.) is an important vegetable crop in many parts of the world, and the main edible part is the fresh pod. Here, we report the characterization of the genic male sterility (ms-2) mutant in common bean. Loss of function of MS-2 accelerates degradation of the tapetum, resulting in a complete male sterility. Through fine-mapping, co-segregation, and re-sequencing analysis, we identified Phvul.003G032100, which encodes the TETRAKETIDE α-PYRONE REDUCTASE 2 (PvTKPR2) protein in common bean, as the causal gene for MS-2. PvTKPR2 is predominantly expressed at the early stages of flower development. A novel 7-bp (+ 6028 bp to + 6034 bp) deletion mutation spans the splice site between the fourth intron and fifth exon, leading to a 9-bp deletion in transcribed mRNA and a 3-amino acid (G210M211V212) deletion in the protein coding sequence of the PvTKPR2ms-2 gene. The 3-D structural changes in the protein due to the mutation may impair the activities of NAD-dependent epimerase/dehydratase and the NAD(P)-binding domains of PvTKPR2ms-2 protein. The ms-2 mutant plants produce many small parthenocarpic pods, and the size of the pods can be doubled by external application of 2 mM indole-3-acetic acid (IAA). Our results demonstrate that a novel mutation in PvTKPR2 impairs male fertility through premature degradation of the tapetum.


Assuntos
Phaseolus , Phaseolus/genética , Pareamento de Bases , NAD/genética , Pironas , Oxirredutases/genética , Fertilidade
11.
Mol Breed ; 43(8): 60, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37496825

RESUMO

Soybean (Glycine max (L.) Merr.) is a typical short-day and temperate crop that is sensitive to photoperiod and temperature. Responses of soybean to photothermal conditions determine plant growth and development, which affect its architecture, yield formation, and capacity for geographic adaptation. Flowering time, maturity, and other traits associated with photothermal adaptability are controlled by multiple major-effect and minor-effect genes and genotype-by-environment interactions. Genetic studies have identified at least 11 loci (E1-E4, E6-E11, and J) that participate in photoperiodic regulation of flowering time and maturity in soybean. Molecular cloning and characterization of major-effect flowering genes have clarified the photoperiod-dependent flowering pathway, in which the photoreceptor gene phytochrome A, circadian evening complex (EC) components, central flowering repressor E1, and FLOWERING LOCUS T family genes play key roles in regulation of flowering time, maturity, and adaptability to photothermal conditions. Here, we provide an overview of recent progress in genetic and molecular analysis of traits associated with photothermal adaptability, summarizing advances in molecular breeding practices and tools for improving these traits. Furthermore, we discuss methods for breeding soybean varieties with better adaptability to specific ecological regions, with emphasis on a novel strategy, the Potalaization model, which allows breeding of widely adapted soybean varieties through the use of multiple molecular tools in existing elite widely adapted varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01406-z.

12.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569874

RESUMO

Sucrose synthases (SUS; EC 2.4.1.13) encoded by a small multigene family are the central system of sucrose metabolism and have important implications for carbon allocation and energy conservation in nonphotosynthetic cells of plants. Though the SUS family genes (SUSs) have been identified in several plants, they have not been explored in sweet potato. In this research, nine, seven and seven SUSs were identified in the cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) as well as its two diploid wild relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, and divided into three subgroups according to their phylogenetic relationships. Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network and expression patterns were systematically analyzed. The results indicated that the SUS gene family underwent segmental and tandem duplications during its evolution. The SUSs were highly expressed in sink organs. The IbSUSs especially IbSUS2, IbSUS5 and IbSUS7 might play vital roles in storage root development and starch biosynthesis. The SUSs could also respond to drought and salt stress responses and take part in hormone crosstalk. This work provides new insights for further understanding the functions of SUSs and candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes.


Assuntos
Ipomoea batatas , Ipomoea batatas/metabolismo , Filogenia , Diploide , Amido/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982229

RESUMO

Copper Chaperone For Superoxide Dismutase (CCS) genes encode copper chaperone for Superoxide dismutase (SOD) and dramatically affect the activity of SOD through regulating copper delivery from target to SOD. SOD is the effective component of the antioxidant defense system in plant cells to reduce oxidative damage by eliminating Reactive oxygen species (ROS), which are produced during abiotic stress. CCS might play an important role in abiotic stress to eliminate the damage caused by ROS, however, little is known about CCS in soybean in abiotic stress regulation. In this study, 31 GmCCS gene family members were identified from soybean genome. These genes were classified into 4 subfamilies in the phylogenetic tree. Characteristics of 31 GmCCS genes including gene structure, chromosomal location, collinearity, conserved domain, protein motif, cis-elements, and tissue expression profiling were systematically analyzed. RT-qPCR was used to analyze the expression of 31 GmCCS under abiotic stress, and the results showed that 5 GmCCS genes(GmCCS5, GmCCS7, GmCCS8, GmCCS11 and GmCCS24) were significantly induced by some kind of abiotic stress. The functions of these GmCCS genes in abiotic stress were tested using yeast expression system and soybean hairy roots. The results showed that GmCCS7/GmCCS24 participated in drought stress regulation. Soybean hairy roots expressing GmCCS7/GmCCS24 showed improved drought stress tolerance, with increased SOD and other antioxidant enzyme activities. The results of this study provide reference value in-depth study CCS gene family, and important gene resources for the genetic improvement of soybean drought stress tolerance.


Assuntos
Cobre , Glycine max , Cobre/metabolismo , Glycine max/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Filogenia , Superóxido Dismutase/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
14.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835500

RESUMO

Phytochrome-interacting factors (PIFs) are essential for plant growth, development, and defense responses. However, research on the PIFs in sweet potato has been insufficient to date. In this study, we identified PIF genes in the cultivated hexaploid sweet potato (Ipomoea batatas) and its two wild relatives, Ipomoea triloba, and Ipomoea trifida. Phylogenetic analysis revealed that IbPIFs could be divided into four groups, showing the closest relationship with tomato and potato. Subsequently, the PIFs protein properties, chromosome location, gene structure, and protein interaction network were systematically analyzed. RNA-Seq and qRT-PCR analyses showed that IbPIFs were mainly expressed in stem, as well as had different gene expression patterns in response to various stresses. Among them, the expression of IbPIF3.1 was strongly induced by salt, drought, H2O2, cold, heat, Fusarium oxysporum f. sp. batatas (Fob), and stem nematodes, indicating that IbPIF3.1 might play an important role in response to abiotic and biotic stresses in sweet potato. Further research revealed that overexpression of IbPIF3.1 significantly enhanced drought and Fusarium wilt tolerance in transgenic tobacco plants. This study provides new insights for understanding PIF-mediated stress responses and lays a foundation for future investigation of sweet potato PIFs.


Assuntos
Fusarium , Ipomoea batatas , Ipomoea , Fitocromo , Ipomoea batatas/metabolismo , Fusarium/metabolismo , Filogenia , Fitocromo/metabolismo , Secas , Peróxido de Hidrogênio/metabolismo , Ipomoea/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
15.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446203

RESUMO

Plant height, petiole length, and the angle of the leaf petiole and branch angles are crucial traits determining plant architecture and yield in soybean (Glycine max L.). Here, we characterized a soybean mutant with super-short petioles (SSP) and enlarged petiole angles (named Gmssp) through phenotypic observation, anatomical structure analysis, and bulk sequencing analysis. To identify the gene responsible for the Gmssp mutant phenotype, we established a pipeline involving bulk sequencing, variant calling, functional annotation by SnpEFF (v4.0e) software, and Integrative Genomics Viewer analysis, and we initially identified Glyma.11G026400, encoding a homolog of Anaphase-promoting complex subunit 8 (APC8). Another mutant, t7, with a large deletion of many genes including Glyma.11G026400, has super-short petioles and an enlarged petiole angle, similar to the Gmssp phenotype. Characterization of the t7 mutant together with quantitative trait locus mapping and allelic variation analysis confirmed Glyma.11G026400 as the gene involved in the Gmssp phenotype. In Gmssp, a 4 bp deletion in Glyma.11G026400 leads to a 380 aa truncated protein due to a premature stop codon. The dysfunction or absence of Glyma.11G026400 caused severe defects in morphology, anatomical structure, and physiological traits. Transcriptome analysis and weighted gene co-expression network analysis revealed multiple pathways likely involved in these phenotypes, including ubiquitin-mediated proteolysis and gibberellin-mediated pathways. Our results demonstrate that dysfunction of Glyma.11G026400 leads to diverse functional consequences in different tissues, indicating that this APC8 homolog plays key roles in cell differentiation and elongation in a tissue-specific manner. Deciphering the molecular control of petiole length and angle enriches our knowledge of the molecular network regulating plant architecture in soybean and should facilitate the breeding of high-yielding soybean cultivars with compact plant architecture.


Assuntos
Anáfase , Glycine max , Glycine max/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo
16.
New Phytol ; 236(6): 2151-2171, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36128653

RESUMO

Drought limits crop development and yields. bHLH (basic helix-loop-helix) transcription factors play critical roles in regulating the drought response in many plants, but their roles in this process in sweet potato are unknown. Here, we report that two bHLH proteins, IbbHLH118 and IbbHLH66, play opposite roles in the ABA-mediated drought response in sweet potato. ABA treatment repressed IbbHLH118 expression but induced IbbHLH66 expression in the drought-tolerant sweet potato line Xushu55-2. Overexpressing IbbHLH118 reduced drought tolerance, whereas overexpressing IbbHLH66 enhanced drought tolerance, in sweet potato. IbbHLH118 directly binds to the E-boxes in the promoters of ABA-insensitive 5 (IbABI5), ABA-responsive element binding factor 2 (IbABF2) and tonoplast intrinsic protein 1 (IbTIP1) to suppress their transcription. IbbHLH118 forms homodimers with itself or heterodimers with IbbHLH66. Both of the IbbHLHs interact with the ABA receptor IbPYL8. ABA accumulates under drought stress, promoting the formation of the IbPYL8-IbbHLH66-IbbHLH118 complex. This complex interferes with IbbHLH118's repression of ABA-responsive genes, thereby activating ABA responses and enhancing drought tolerance. These findings shed light on the role of the IbPYL8-IbbHLH66-IbbHLH118 complex in the ABA-dependent drought response of sweet potato and identify candidate genes for developing elite crop varieties with enhanced drought tolerance.


Assuntos
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Secas , Ipomoea batatas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
New Phytol ; 233(3): 1133-1152, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773641

RESUMO

Soil salinity and drought limit sweet potato yield. Scavenging of reactive oxygen species (ROS) by peroxidases (PRXs) is essential during plant stress responses, but how PRX expression is regulated under abiotic stress is not well understood. Here, we report that the B-box (BBX) family transcription factor IbBBX24 activates the expression of the class III peroxidase gene IbPRX17 by binding to its promoter. Overexpression of IbBBX24 and IbPRX17 significantly improved the tolerance of sweet potato to salt and drought stresses, whereas reducing IbBBX24 expression increased their susceptibility. Under abiotic stress, IbBBX24- and IbPRX17-overexpression lines showed higher peroxidase activity and lower H2 O2 accumulation compared with the wild-type. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes encoding ROS scavenging enzymes, including PRXs. Moreover, interaction between IbBBX24 and the APETALA2 (AP2) protein IbTOE3 enhances the ability of IbBBX24 to activate IbPRX17 transcription. Overexpression of IbTOE3 improved the tolerance of tobacco plants to salt and drought stresses by scavenging ROS. Together, our findings elucidate the mechanism underlying the IbBBX24-IbTOE3-IbPRX17 module in response to abiotic stress in sweet potato and identify candidate genes for developing elite crop varieties with enhanced abiotic stress tolerance.


Assuntos
Ipomoea batatas , Secas , Regulação da Expressão Gênica de Plantas , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética
18.
Anal Biochem ; 655: 114847, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964731

RESUMO

Sensitive and rapid diagnostic point of care testing (POCT) system is of great significance to prevent and control human virus infection. Here reported an immunochromatographic strip technology. The second near-infrared (NIR-II) fluorescent dye encapsulated into polystyrene (PS) nanoparticles, was integrated into a lateral flow assay platform to achieve excellent detection of influenza A/B. This surface-functionalized and mono-dispersed PS nanoparticles has been conjugated with influenza nucleoprotein monoclonal antibody as targets for influenza antigen-detection. This assay achieved the detection limit of 0.015 ng/mL for influenza A nucleoprotein and 4.3*10-5 HAU/mL (102.08 TCID50/mL) influenza A virus (influenza B: 0.037 ng/mL, 9.7*10-7 HAU/mL (100.43 TCID50/mL)). Compared with an Au-based lateral flow test strip, the strip's sensitivity is about 16-fold higher than it. Strip detection properties remain stable for 6 months under 4 °C to 30 °C storage. The assay's intra assay variation is 5.14% and the inter assay variation is 7.74%. Other potential endogenous and exogenous interfering substances (whole blood, nasal mucin, saliva, antipyretics, antihistamines and neuraminidase inhibitors) showed negative results, which verified the excellent specificity of this method. This assay was successfully applied to the POCT quantitative detection of influenza A/B virus, the sensitivity to influenza A and B viruses was 70% and 87.5% respectively, and the specificity was 100%. Therefore, these microspheres can be used as an effective material for rapid POCT detection in clinical specimens.


Assuntos
Herpesvirus Cercopitecino 1 , Vírus da Influenza A , Influenza Humana , Anticorpos Antivirais , Corantes Fluorescentes , Humanos , Imunoensaio/métodos , Vírus da Influenza B , Influenza Humana/diagnóstico , Nucleoproteínas , Sensibilidade e Especificidade
19.
Phys Chem Chem Phys ; 24(44): 27388-27393, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36331309

RESUMO

The binding of the spike glycoprotein (S protein) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to angiotensin-converting enzyme 2 (ACE2) is the main pathway that leads to serious coronavirus disease 2019 (COVID-19) infection. In the biomedical applications of various nanomaterials, black phosphorus nanosheets (BP) have been receiving increasing attention owing to their excellent characteristics. In this study, the biological effect of BP on the interaction between the S protein and ACE2 was investigated by molecular dynamics simulations. The results indicated that the ACE2 could be quickly and stably adsorbed on the BP surface by non-specific binding and retain its structural integrity. Compared with the case without BP, the interaction of the S protein bound to ACE2 adsorbed on the BP surface was greatly weakened, including hydrogen bonds, salt bridges, and van der Waals forces. This study not only reveals that BP could effectively obstruct the binding of S protein and ACE2, which may provide a potential and reasonable drug carrier to further enhance the curative effect of inhibitors against SARS-CoV-2 infection, but also presents a novel interference mechanism for protein-protein interactions caused by nanomaterials.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Fósforo , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Nanoestruturas
20.
Plant Cell Rep ; 41(11): 2159-2171, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35943560

RESUMO

KEY MESSAGE: A novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. was obtained and its genetic and epigenetic variations were studied. Somatic hybridization can be used to overcome the cross-incompatibility between sweet potato (Ipomoea batatas (L.) Lam.) and its wild relatives and transfer useful and desirable genes from wild relatives to cultivated plants. However, most of the interspecific somatic hybrids obtained to date cannot produce storage roots and do not exhibit agronomic characters. In the present study, a novel interspecific somatic hybrid, named XT1, was obtained through protoplast fusion between sweet potato cv. Xushu 18 and its wild relative I. triloba. This somatic hybrid produced storage roots and exhibited significantly higher drought tolerance and quality compared with its cultivated parent Xushu 18. Transcriptome and real-time quantitative PCR (qRT-PCR) analyses revealed that the well-known drought stress-responsive genes in XT1 and I. triloba were significantly up-regulated under drought stress. The genomic structural reconstructions between the two genomes of the fusion parents in XT1 were confirmed using genomic in situ hybridization (GISH) and specific nuclear and cytoplasmic DNA markers. The DNA methylation variations were characterized by methylation-sensitive amplified polymorphism (MSAP). This study not only reveals the significance of somatic hybridization in the genetic improvement of sweet potato but also provides valuable materials and knowledge for further investigating the mechanism of storage root formation in sweet potato.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Ipomoea/genética , Secas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA