Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 187(12): 3024-3038.e14, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781969

RESUMO

Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.


Assuntos
Proteínas de Plantas , Regeneração , Transdução de Sinais , Solanum lycopersicum , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo
2.
EMBO J ; 39(20): e105047, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32926464

RESUMO

Proper regulation of homeotic gene expression is critical for stem cell fate in both plants and animals. In Arabidopsis thaliana, the WUSCHEL (WUS)-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in a group of root stem cell organizer cells called the quiescent center (QC) and plays a central role in QC specification. Here, we report that the SEUSS (SEU) protein, homologous to the animal LIM-domain binding (LDB) proteins, assembles a functional transcriptional complex that regulates WOX5 expression and QC specification. SEU is physically recruited to the WOX5 promoter by the master transcription factor SCARECROW. Subsequently, SEU physically recruits the SET domain methyltransferase SDG4 to the WOX5 promoter, thus activating WOX5 expression. Thus, analogous to its animal counterparts, SEU acts as a multi-adaptor protein that integrates the actions of genetic and epigenetic regulators into a concerted transcriptional program to control root stem cell organizer specification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodomínio/metabolismo , Raízes de Plantas/metabolismo , Células-Tronco/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Regiões Promotoras Genéticas , Domínios Proteicos , Transdução de Sinais , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologia
3.
Plant Physiol ; 179(1): 220-232, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401723

RESUMO

SHORTROOT (SHR) is essential for stem cell maintenance and radial patterning in Arabidopsis (Arabidopsis thaliana) roots, but how its expression is regulated is unknown. Here, we report that the Elongator complex, which consists of six subunits (ELP1 to ELP6), regulates the transcription of SHR Depletion of Elongator drastically reduced SHR expression and led to defective root stem cell maintenance and radial patterning. The importance of the nuclear localization of Elongator for its functioning, together with the insensitivity of the elp1 mutant to the transcription elongation inhibitor 6-azauracil, and the direct interaction of the ELP4 subunit with the carboxyl-terminal domain of RNA polymerase II, support the notion that Elongator plays important roles in transcription elongation. Indeed, we found that ELP3 associates with the premessenger RNA of SHR and that mutation of Elongator reduces the enrichment of RNA polymerase II on the SHR gene body. Moreover, Elongator interacted in vivo with SUPPRESSOR OF Ty4, a well-established transcription elongation factor that is recruited to the SHR locus. Together, these results demonstrate that Elongator acts in concert with SUPPRESSOR OF Ty4 to regulate the transcription of SHR.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Meristema/citologia , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Transcrição Gênica
4.
Hortic Res ; 11(4): uhae055, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659442

RESUMO

Saline-alkaline stress is a worldwide problem that threatens the growth and yield of crops. However, how crops adapt to saline-alkaline stress remains less studied. Here we show that saline-alkaline tolerance was compromised during tomato domestication and improvement, and a natural variation in the promoter of SlSCaBP8, an EF-hand Ca2+ binding protein, contributed to the loss of saline-alkaline tolerance during tomato improvement. The biochemical and genetic data showed that SlSCaBP8 is a positive regulator of saline-alkaline tolerance in tomato. The introgression line Pi-75, derived from a cross between wild Solanum pimpinellifolium LA1589 and cultivar E6203, containing the SlSCaBP8LA1589 locus, showed stronger saline-alkaline tolerance than E6203. Pi-75 and LA1589 also showed enhanced saline-alkaline-induced SlSCaBP8 expression than that of E6203. By sequence analysis, a natural variation was found in the promoter of SlSCaBP8 and the accessions with the wild haplotype showed enhanced saline-alkaline tolerance compared with the cultivar haplotype. Our studies clarify the mechanism of saline-alkaline tolerance conferred by SlSCaBP8 and provide an important natural variation in the promoter of SlSCaBP8 for tomato breeding.

5.
Sci Data ; 11(1): 577, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834611

RESUMO

Solanum pimpinellifolium, the closest wild relative of the domesticated tomato, has high potential for use in breeding programs aimed at developing multi-pathogen resistance and quality improvement. We generated a chromosome-level genome assembly of S. pimpinellifolium LA1589, with a size of 833 Mb and a contig N50 of 31 Mb. We anchored 98.80% of the contigs into 12 pseudo-chromosomes, and identified 74.47% of the sequences as repetitive sequences. The genome evaluation revealed BUSCO and LAI score of 98.3% and 14.49, respectively, indicating high quality of this assembly. A total of 41,449 protein-coding genes were predicted in the genome, of which 89.17% were functionally annotated. This high-quality genome assembly serves as a valuable resource for accelerating the biological discovery and molecular breeding of this important horticultural crop.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Solanum , Solanum/genética , Anotação de Sequência Molecular
6.
Mol Plant ; 17(4): 509-512, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38327053

RESUMO

As the master regulators of the ET signaling pathway, EIL transcription factors directly activate the expression of CYP94C1 to inactivate bioactive JA-Ile, thereby attenuating JA-mediated defense during fruit ripening. Knockout of CYP94C1 improves tomato fruit resistance to necrotrophs without compromising fruit quality.


Assuntos
Isoleucina/análogos & derivados , Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Nat Plants ; 9(10): 1659-1674, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723204

RESUMO

Crop breeding for mechanized harvesting has driven modern agriculture. In tomato, machine harvesting for industrial processing varieties became the norm in the 1970s. However, fresh-market varieties whose fruits are suitable for mechanical harvesting are difficult to breed because of associated reduction in flavour and nutritional qualities. Here we report the cloning and functional characterization of fs8.1, which controls the elongated fruit shape and crush resistance of machine-harvestable processing tomatoes. FS8.1 encodes a non-canonical GT-2 factor that activates the expression of cell-cycle inhibitor genes through the formation of a transcriptional module with the canonical GT-2 factor SlGT-16. The fs8.1 mutation results in a lower inhibitory effect on the cell proliferation of the ovary wall, leading to elongated fruits with enhanced compression resistance. Our study provides a potential route for introducing the beneficial allele into fresh-market tomatoes without reducing quality, thereby facilitating mechanical harvesting.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal , Agricultura
8.
Mol Plant ; 15(8): 1329-1346, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35780296

RESUMO

The plant hormone jasmonate (JA) regulates plant immunity and adaptive growth by orchestrating a genome-wide transcriptional program. Key regulators of JA-responsive gene expression include the master transcription factor MYC2, which is repressed by the conserved Groucho/Tup1-like corepressor TOPLESS (TPL) in the resting state. However, the mechanisms underlying TPL-mediated transcriptional repression of MYC2 activity and hormone-dependent switching between repression and de-repression remain enigmatic. Here, we report the regulation of TPL activity and JA signaling by reversible acetylation of TPL. We found that the histone acetyltransferase GCN5 could mediate TPL acetylation, which enhances its interaction with the NOVEL-INTERACTOR-OF-JAZ (NINJA) adaptor and promotes its recruitment to MYC2 target promoters, facilitating transcriptional repression. Conversely, TPL deacetylation by the histone deacetylase HDA6 weakens TPL-NINJA interaction and inhibits TPL recruitment to MYC2 target promoters, facilitating transcriptional activation. In the resting state, the opposing activities of GCN5 and HDA6 maintain TPL acetylation homeostasis, promoting transcriptional repression activity of TPL. In response to JA elicitation, HDA6 expression is transiently induced, resulted in decreased TPL acetylation and repressor activity, thereby transcriptional activation of MYC2 target genes. Thus, the GCN5-TPL-HDA6 module maintains the homeostasis of acetylated TPL, thereby determining the transcriptional state of JA-responsive genes. Our findings uncovered a mechanism by which the TPL corepressor activity in JA signaling is actively tuned in a rapid and reversible manner.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Correpressoras/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Oxilipinas/metabolismo , Proteínas Repressoras/metabolismo
9.
Plant Commun ; 1(3): 100042, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33367238

RESUMO

Cryptochrome 1 (CRY1) is an important light receptor essential for de-etiolation of Arabidopsis seedlings. However, its function in regulating plant architecture remains unclear. Here, we show that mutation in CRY1 resulted in increased branching of Arabidopsis plants. To investigate the underlying mechanism, we analyzed the expression profiles of branching-related genes and found that the mRNA levels of Phytochrome Interaction Factor 4 (PIF4) and PIF5 are significantly increased in the cry1 mutant. Genetic analysis showed that the pif4 or pif4pif5 mutant is epistatic to the cry1 mutant, and overexpression of PIF4 conferred increased branching. Moreover, we demonstrated that PIF4 proteins physically associate with the G-box motif within the PIF4 promoter to form a self-activated transcriptional feedback loop, while CRY1 represses this process in response to blue light. Taken together, this study suggests that the CRY1-PIF4 module regulates gene expression via forming a regulatory loop and shoot branching in response to ambient light conditions.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Criptocromos/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Transdução de Sinais/efeitos dos fármacos , Criptocromos/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA