Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
BMC Plant Biol ; 24(1): 31, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182989

RESUMO

BACKGROUND: The orchids of the subtribe Coelogyninae are among the most morphologically diverse and economically important groups within the subfamily Epidendroideae. Previous molecular studies have revealed that Coelogyninae is an unambiguously monophyletic group. However, intergeneric and infrageneric relationships within Coelogyninae are largely unresolved. There has been long controversy over the classification among the genera within the subtribe. RESULTS: The complete chloroplast (cp.) genomes of 15 species in the subtribe Coelogyninae were newly sequenced and assembled. Together with nine available cp. genomes in GenBank from representative clades of the subtribe, we compared and elucidated the characteristics of 24 Coelogyninae cp. genomes. The results showed that all cp. genomes shared highly conserved structure and contained 135 genes arranged in the same order, including 89 protein-coding genes, 38 tRNAs, and eight rRNAs. Nevertheless, structural variations in relation to particular genes at the IR/SC boundary regions were identified. The diversification pattern of the cp. genomes showed high consistency with the phylogenetic placement of Coelogyninae. The number of different types of SSRs and long repeats exhibited significant differences in the 24 Coelogyninae cp. genomes, wherein mononucleotide repeats (A/T), and palindromic repeats were the most abundant. Four mutation hotspot regions (ycf1a, ndhF-rp132, psaC-ndhE, and rp132-trnL) were determined, which could serve as effective molecular markers. Selection pressure analysis revealed that three genes (ycf1a, rpoC2 and ycf2 genes) might have experienced apparent positive selection during the evolution. Using the alignments of whole cp. genomes and protein-coding sequences, this study presents a well-resolved phylogenetic framework of Coelogyninae. CONCLUSION: The inclusion of 55 plastid genome data from a nearly complete generic-level sampling provide a comprehensive view of the phylogenetic relationships among genera and species in subtribe Coelogyninae and illustrate the diverse genetic variation patterns of plastid genomes in this species-rich plant group. The inferred relationships and informally recognized major clades within the subtribe are presented. The genetic markers identified here will facilitate future studies on the genetics and phylogeny of subtribe Coelogyninae.


Assuntos
Orchidaceae , Filogenia , Orchidaceae/genética , Genômica , Cloroplastos/genética , Evolução Molecular
2.
Mol Phylogenet Evol ; 196: 108084, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688440

RESUMO

The tribe Collabieae (Epidendroideae, Orchidaceae) comprises approximately 500 species. Generic delimitation within Collabieae are confusing and phylogenetic interrelationships within the Collabieae have not been well resolved. Plastid genomes and nuclear internal transcribed spacer (ITS) sequences were used to estimate the phylogenetic relationships, ancestral ranges, and diversification rates of Collabieae. The results showed that Collabieae was subdivided into nine clades with high support. We proposed to combine Ancistrochilus and Pachystoma into Spathoglottis, merge Collabium and Chrysoglossum into Diglyphosa, and separate Pilophyllum and Hancockia as distinctive genera. The diversification of the nine clades of Collabieae might be associated with the uplift of the Himalayas during the Late Oligocene/Early Miocene. The enhanced East Asian summer monsoon in the Late Miocene may have promoted the rapid diversification of Collabieae at a sustained high diversification rate. The increased size of terrestrial pseudobulbs may be one of the drivers of Collabieae diversification. Our results suggest that the establishment and development of evergreen broadleaved forests facilitated the diversification of Collabieae.


Assuntos
Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Florestas , Genomas de Plastídeos/genética , Filogeografia , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA , Ásia , DNA de Plantas/genética
3.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338856

RESUMO

Epipogium roseum, commonly known as one of the ghost orchids due to its rarity and almost transparent color, is a non-photosynthetic and fully mycoheterotrophic plant. Given its special nutritional strategies and evolutionary significance, the mitogenome was first characterized, and three plastomes sampled from Asia were assembled. The plastomes were found to be the smallest among Orchidaceae, with lengths ranging from 18,339 to 19,047 bp, and exhibited high sequence variety. For the mitogenome, a total of 414,552 bp in length, comprising 26 circular chromosomes, were identified. A total of 54 genes, including 38 protein-coding genes, 13 tRNA genes, and 3 rRNA genes, were annotated. Multiple repeat sequences spanning a length of 203,423 bp (45.47%) were discovered. Intriguingly, six plastid regions via intracellular gene transfer and four plastid regions via horizontal gene transfer to the mitogenome were observed. The phylogenomics, incorporating 90 plastomes and 56 mitogenomes, consistently revealed the sister relationship of Epipogium and Gastrodia, with a bootstrap percentage of 100%. These findings shed light on the organelle evolution of Orchidaceae and non-photosynthetic plants.


Assuntos
Genomas de Plastídeos , Orchidaceae , Filogenia , Plastídeos , Orchidaceae/genética , Ásia , Evolução Molecular
4.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791460

RESUMO

The TIFY gene family (formerly known as the zinc finger proteins expressed in inflorescence meristem (ZIM) family) not only functions in plant defense responses but also are widely involved in regulating plant growth and development. However, the identification and functional analysis of TIFY proteins remain unexplored in Orchidaceae. Here, we identified 19 putative TIFY genes in the Phalaenopsis aphrodite genome. The phylogenetic tree classified them into four subfamilies: 14 members from JAZ, 3 members from ZML, and 1 each from PPD and TIFY. Sequence analysis revealed that all Phalaenopsis TIFY proteins contained a TIFY domain. Exon-intron analysis showed that the intron number and length of Phalaenopsis TIFY genes varied, whereas the same subfamily and subgroup genes had similar exon or intron numbers and distributions. The most abundant cis-elements in the promoter regions of the 19 TIFY genes were associated with light responsiveness, followed by MeJA and ABA, indicating their potential regulation by light and phytohormones. The 13 candidate TIFY genes screened from the transcriptome data exhibited two types of expression trends, suggesting their different roles in cell proliferation and cell expansion of floral organ growth during Phalaenopsis flower opening. Overall, this study serves as a background for investigating the underlying roles of TIFY genes in floral organ growth in Phalaenopsis.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Família Multigênica , Orchidaceae , Filogenia , Proteínas de Plantas , Orchidaceae/genética , Orchidaceae/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
5.
Mol Phylogenet Evol ; 184: 107797, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37086913

RESUMO

Pleione is an orchid endemically distributed in high mountain areas across the Hengduan Mountains (HDM), Himalayas, Southeast Asia and South of China. The unique flower shapes, rich colors and immense medicinal importance of Pleione are valuable ornamental and economic resources. However, the phylogenetic relationships and evolutionary history of the genus have not yet been comprehensively resolved. Here, the evolutionary history of Pleione was investigated using single-copy gene single nucleotide polymorphisms and chloroplast genome datasets. The data revealed that Pleione could be divided into five clades. Discordance in topology between the two phylogenetic trees and network and D-statistic analyses indicated the occurrence of reticulate evolution in the genus. The evolution could be attributed to introgression and incomplete lineage sorting. Ancestral area reconstruction suggested that Pleione was originated from the HDM. Uplifting of the HDM drove rapid diversification by creating conditions favoring rapid speciation. This coincided with two periods of consolidation of the Asian monsoon climate, which caused the first rapid diversification of Pleione from 8.87 to 7.83 Mya, and a second rapid diversification started at around 4.05 Mya to Pleistocene. The interaction between Pleione and climate changes, especially the monsoons, led to the current distribution pattern and shaped the dormancy characteristic of the different clades. In addition to revealing the evolutionary relationship of Pleione with orogeny and climate changes, the findings of this study provide insights into the speciation and diversification mechanisms of plants in the East Asian flora.


Assuntos
Genoma de Cloroplastos , Plantas , Filogenia , China , Flores
6.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139421

RESUMO

WNK (With No Lysine) kinases are members of serine/threonine protein kinase family, which lack conserved a catalytic lysine (K) residue in protein kinase subdomain II and this residue is replaced by either asparagine, serine, or glycine residues. They are involved in various physiological regulations of flowering time, circadian rhythms, and abiotic stresses in plants. In this study, we identified the WNK gene family in two species of Acorus, and analyzed their phylogenetic relationship, physiochemical properties, subcellular localization, collinearity, and cis-elements. The results showed twenty-two WNKs in two Acorus (seven in Ac. gramineus and fifteen in Ac. calamus) have been identified and clustered into five main clades phylogenetically. Gene structure analysis showed all WNKs possessed essential STKc_WNK or PKc_like superfamily domains, and the gene structures and conserved motifs of the same clade were similar. All the WNKs harbored a large number of light response elements, plant hormone signaling elements, and stress resistance elements. Through a collinearity analysis, two and fourteen segmental duplicated gene pairs were identified in the Ac. gramineus and Ac. calamus, respectively. Moreover, we observed tissue-specificity of WNKs in Acorus using transcriptomic data, and their expressions in response to salt stress and cold stress were analyzed by qRT-PCR. The results showed WNKs are involved in the regulation of abiotic stresses. There were significant differences in the expression levels of most of the WNKs in the leaves and roots of Acorus under salt stress and cold stress, among which two members in Ac. gramineus (AgWNK3 and AgWNK4) and two members in Ac. calamus (AcWNK8 and AcWNK12) were most sensitive to stress. In summary, this paper will significantly contribute to the understanding of WNKs in monocots and thus provide a set up for functional genomics studies of WNK protein kinases.


Assuntos
Acorus , Acorus/metabolismo , Filogenia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Serina/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Zhongguo Zhong Yao Za Zhi ; 45(3): 491-496, 2020 Feb.
Artigo em Zh | MEDLINE | ID: mdl-32237505

RESUMO

Natural indigo, as one of the oldest dyes, is also a pivotal dye utilized in cotton fabrics today. A diversity of plants rich in indigo compounds belong to traditional Chinese herbal medicines. Indigo compounds have a variety of biological and pharmacological activities, including anticonvulsant, antibacterial, antifungal, antiviral and anticancer activities. A substantial progress in indigo biosynthesis has been made lately. This paper summarizes the value of indigo from the aspects of cultural history, biosynthetic pathways and the medicinal activities of its related derivatives involved in the pathways. In addition, the latest research advancements in indigo biosynthetic pathways is demonstrated in this paper, which would lay the theoretical foundation for the exploration and utilization of natural indigo.


Assuntos
Índigo Carmim/metabolismo , Indigofera/metabolismo , Vias Biossintéticas , Corantes
8.
Mol Phylogenet Evol ; 139: 106542, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229601

RESUMO

Goodyerinae are one of the most species-rich and widespread subtribes of Orchidaceae but notorious for their taxonomic difficulty. Here, a comprehensive molecular phylogenetic study of the subtribe is presented based on two nuclear (ITS, Xdh) and five plastid (matK, psaB, rbcL, trnL, trnL-F) regions. A total of 119 species were included representing all clades recovered by previous phylogenetic analyses as well as seven outgroups. Maximum parsimony, maximum likelihood and Bayesian inference methods were used to infer the phylogenetic relationships. The results show that the Goodyerinae subdivided into three major subdivisions and six groupings: Pachyplectron, Goodyera clade (including Goodyera procera, Microchilus subclade and Goodyera subclade) and Cheirostylis clade (including Gonatostylis, Cheirostylis subclade and Ludisia subclade). Four genera, Erythrodes, Goodyera, Myrmechis and Odontochilus, are not monophyletic. The results support Odontochilus s. l. to include Myrmechis and Kuhlhasseltia. The systematic positions of Goodyera procera and two isolated genera, Herpysma and Orchipedum, are difficult to determine.


Assuntos
Orchidaceae/classificação , Teorema de Bayes , Núcleo Celular/genética , Orchidaceae/genética , Filogenia , Plastídeos/genética
9.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905846

RESUMO

Floral color polymorphism can provide great insight into species evolution from a genetic and ecological standpoint. Color variations between species are often mediated by pollinators and are fixed characteristics, indicating their relevance to adaptive evolution, especially between plants within a single population or between similar species. The orchid genus Pleione has a wide variety of flower colors, from violet, rose-purple, pink, to white, but their color formation and its evolutionary mechanism are unclear. Here, we selected the P. limprichtii population in Huanglong, Sichuan Province, China, which displayed three color variations: Rose-purple, pink, and white, providing ideal material for exploring color variations with regard to species evolution. We investigated the distribution pattern of the different color morphs. The ratio of rose-purple:pink:white-flowered individuals was close to 6:3:1. We inferred that the distribution pattern may serve as a reproductive strategy to maintain the population size. Metabolome analysis was used to reveal that cyanindin derivatives and delphidin are the main color pigments involved. RNA sequencing was used to characterize anthocyanin biosynthetic pathway-related genes and reveal different color formation pathways and transcription factors in order to identify differentially-expressed genes and explore their relationship with color formation. In addition, qRT-PCR was used to validate the expression patterns of some of the genes. The results show that PlFLS serves as a crucial gene that contributes to white color formation and that PlANS and PlUFGT are related to the accumulation of anthocyanin which is responsible for color intensity, especially in pigmented flowers. Phylogenetic and co-expression analyses also identified a R2R3-MYB gene PlMYB10, which is predicted to combine with PlbHLH20 or PlbHLH26 along with PlWD40-1 to form an MBW protein complex (MYB, bHLH, and WDR) that regulates PlFLS expression and may serve as a repressor of anthocyanin accumulation-controlled color variations. Our results not only explain the molecular mechanism of color variation in P. limprichtii, but also contribute to the exploration of a flower color evolutionary model in Pleione, as well as other flowering plants.


Assuntos
Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Orchidaceae/genética , Orchidaceae/metabolismo , Polimorfismo Genético , Transcriptoma , Antocianinas/metabolismo , Vias Biossintéticas/genética , China , Cor , Proteínas de Ligação a DNA , Metaboloma , Orchidaceae/classificação , Filogenia , Pigmentação/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA
10.
Molecules ; 24(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484345

RESUMO

Pleione (Orchidaceae) is not only famous for the ornamental value in Europe because of its special color, but also endemic in Southern Asia for its use in traditional medicine. A great deal of research about its secondary metabolites and biological activities has been done on only three of 30 species of Pleione. Up to now, 183 chemical compounds, such as phenanthrenes, bibenzyls, glucosyloxybenzyl succinate derivatives, flavonoids, lignans, terpenoids, etc., have been obtained from Pleione. These compounds have been demonstrated to play a significant role in anti-tumor, anti-neurodegenerative and anti-inflammatory biological activities and improve immunity. In order to further develop the drugs and utilize the plants, the chemical structural analysis and biological activities of Pleione are summarized in this review.


Assuntos
Bibenzilas/química , Orchidaceae/química , Anti-Inflamatórios/química , Antineoplásicos/química , Medicamentos de Ervas Chinesas/química , Estrutura Molecular
11.
BMC Plant Biol ; 15: 36, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652180

RESUMO

BACKGROUND: There are different opinions about the relationship of two disjunctively distributed varieties Adiantum reniforme L. var. sinense Y.X.Lin and Adiantum reniforme L. Adiantum reniforme var. sinense is an endangered fern only distributed in a narrowed region of Chongqing city in China, while Adiantum reniforme var. reniforme just distributed in Canary Islands and Madeira off the north-western African coast. To verify the relationship of these two taxa, relative phylogenetic analyses, karyotype analyses, microscopic spore observations and morphological studies were performed in this study. Besides, divergence time between A. reniforme var. sinense and A. reniforme var. reniforme was estimated using GTR model according to a phylogeny tree constructed with the three cpDNA markers atpA, atpB, and rbcL. RESULTS: Phylogenetic results and divergence time analyses--all individuals of A. reniforme var. sinense from 4 different populations (representing all biogeographic distributions) were clustered into one clade and all individuals of A. reniforme var. reniforme from 7 different populations (all biogeographic distributions are included) were clustered into another clade. The divergence between A. reniforme var. reniforme and A. reniforme var. sinense was estimated to be 4.94 (2.26-8.66) Myr. Based on karyotype analyses, A. reniforme var. reniforme was deduced to be hexaploidy with 2n = 180, X = 30, while A. reniforme var. sinense was known as tetraploidy. Microscopic spore observations suggested that surface ornamentation of A. reniforme var. reniforme is psilate, but that of A. reniforme var. sinense is rugate. Leaf blades of A. reniforme var. sinense are membranous and reniform and with several obvious concentric rings, and leaves of A. reniforme var. reniforme are pachyphyllous and coriaceous and are much rounder and similar to palm. CONCLUSION: Adiantum reniforme var. sinense is an independent species rather than the variety of Adiantum reniforme var. reniforme. As a result, we approve Adiantum nelumboides X. C. Zhang, nom. & stat. nov. as a legal name instead of the former Adiantum reniforme var. sinense. China was determined to be the most probable evolution centre based on the results of phylogenetic analyses, divergence estimation, relative palaeogeography and palaeoclimate materials.


Assuntos
Adiantum/classificação , Adiantum/genética , China , Cromossomos de Plantas , DNA de Plantas/genética , Marcadores Genéticos , Cariotipagem , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Filogenia , Espanha
12.
Mol Phylogenet Evol ; 77: 216-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24747128

RESUMO

The taxonomy of the Calanthe alliance (Epidendroideae, Orchidaceae), consisting of Calanthe, Cephalantheropsis, and Phaius, has been difficult for orchidologists to understand because of the presence of common morphological features. In this study, in addition to morphological and geographical analyses, maximum parsimony and Bayesian inference analyses were performed based on nucleotide sequences of the nuclear internal transcribed spacer and cpDNA genes of 88 taxa representing the major clades of the Calanthe alliance in China. The results indicated that Cephalantheropsis is monophyletic, while both Phaius and Calanthe are polyphyletic. In Phaius, a total of three species, P. flavus, P. columnaris, and P. takeoi, were segregated to form a new genus, Paraphaius. In Calanthe, subgenus Preptanthe and sect. Styloglossum were both categorized as distinct genera from Calanthe. Our results also confirm that Calanthe delavayi and C. calanthoides are members of Calanthe. Previous studies assigned C. delavayi to Phaius and C. calanthoides to Ghiesbrechtia. Five sections, namely, Alpinocalanthe, Puberula, Ghiesbrechtia, Tricarinata, and Calanthe, three of which are new taxa, were recognized in Calanthe. Therefore, we propose that the Calanthe alliance is composed of six genera: Calanthe, Cephalantheropsis, Paraphaius, Phaius, Preptanthe and Styloglossum.


Assuntos
Orchidaceae/genética , Filogenia , Teorema de Bayes , China , DNA de Plantas/genética , Orchidaceae/anatomia & histologia , Análise de Sequência de DNA
13.
Mitochondrial DNA B Resour ; 9(5): 667-671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774187

RESUMO

Isoetes baodongii is a diploid species of Isoetaceae distributed in low altitude area, its megaspore ornamentation is similar to tetraploid species I. sinensis. We collected leaf material of I. baodongii and sequenced it for low depth whole genome sequence, then, a complete chloroplast genome of I. baodongii was assembled and annotated. This chloroplast genome has a circular structure of 145,494 bp in length with a GC content of 38.0%, comprising a large single copy (LSC) region of 91,860 bp, a pair of inverted repeat (IR) regions of 13,207 bp each, and a small single copy (SSC) region of 27,220 bp. 136 genes were annotated, including 84 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. A maximum likelihood phylogeny tree was reconstructed after the sequences alignment, the result showed that I. baodongii formed a sister clade to the one clustered by I. sinensis, I. taiwanensis and I. orientalis. Although the chloroplast genome structure of I. baodongii is extremely similar to other species distributed in China, a well-supported phylogenetic relationship was reconstructed here, these results may provide new messages for further studies on phylogeny and evolution of vascular plant on the earth.

14.
Nat Prod Res ; 37(15): 2486-2492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35289695

RESUMO

Two new bibenzyls (1 and 2) were isolated from the pseudobulbs of Pleione grandiflora (Rolfe) Rolfe along with six known compounds, including isoarundinin I (3), isoarundinin II (4), bulbocodin D (5), batatasin III (6), 5,3'-dihydroxy- 4-(p-hydroxybenzyl)-3-methoxybibenzyl (7) and shancigusin F (8). Their structures were established on the basis of spectroscopic methods. These compounds showed potent DPPH free radical scavenging effects with IC50 values ranging from 49.72 ± 0.35 µM to 65.41 ± 0.49 µM.


Assuntos
Bibenzilas , Medicamentos de Ervas Chinesas , Orchidaceae , Antioxidantes/farmacologia , Bibenzilas/química , Estrutura Molecular , Medicamentos de Ervas Chinesas/química , Orchidaceae/química
15.
Plant Commun ; 4(4): 100595, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36966360

RESUMO

Solanaceae, the nightshade family, have ∼2700 species, including the important crops potato and tomato, ornamentals, and medicinal plants. Several sequenced Solanaceae genomes show evidence for whole-genome duplication (WGD), providing an excellent opportunity to investigate WGD and its impacts. Here, we generated 93 transcriptomes/genomes and combined them with 87 public datasets, for a total of 180 Solanaceae species representing all four subfamilies and 14 of 15 tribes. Nearly 1700 nuclear genes from these transcriptomic/genomic datasets were used to reconstruct a highly resolved Solanaceae phylogenetic tree with six major clades. The Solanaceae tree supports four previously recognized subfamilies (Goetzeioideae, Cestroideae, Nicotianoideae, and Solanoideae) and the designation of three other subfamilies (Schizanthoideae, Schwenckioideae, and Petunioideae), with the placement of several previously unassigned genera. We placed a Solanaceae-specific whole-genome triplication (WGT1) at ∼81 million years ago (mya), before the divergence of Schizanthoideae from other Solanaceae subfamilies at ∼73 mya. In addition, we detected two gene duplication bursts (GDBs) supporting proposed WGD events and four other GDBs. An investigation of the evolutionary histories of homologs of carpel and fruit developmental genes in 14 gene (sub)families revealed that 21 gene clades have retained gene duplicates. These were likely generated by the Solanaceae WGT1 and may have promoted fleshy fruit development. This study presents a well-resolved Solanaceae phylogeny and a new perspective on retained gene duplicates and carpel/fruit development, providing an improved understanding of Solanaceae evolution.


Assuntos
Duplicação Gênica , Solanaceae , Filogenia , Solanaceae/genética , Evolução Molecular , Plantas/genética
16.
Plants (Basel) ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140457

RESUMO

Oxalis triangularis 'Purpurea' has significant ornamental value in landscaping. There is a critical necessity to elucidate the gene functions of O. triangularis 'Purpurea' and dissect the molecular mechanisms governing key ornamental traits. However, a reliable genetic transformation method remains elusive. In this study, our investigation revealed that various transformation parameters, including recipient material (petioles), pre-culture time (2-5 days), acetosyringone (AS) concentration (100-400 µM), Agrobacterium concentrations (OD600 = 0.4-1.0), infection time (5-20 min), and co-culture time (2-5 days), significantly impacted the stable genetic transformation in O. triangular 'Purpurea'. Notably, the highest genetic transformation rate was achieved from the leaf discs pre-cultured for 3 days, treated with 200 µM AS infected with Agrobacterium for 11 min at OD600 of 0.6, and subsequently co-cultured for 3 days. This treatment resulted in a genetic transformation efficiency of 9.88%, and it only took 79 days to produce transgenic plants. Our transformation protocol offers advantages of speed, efficiency, and simplicity, which will greatly facilitate genetic transformation for O. triangular 'Purpurea' and gene function studies.

17.
PeerJ ; 9: e12558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036123

RESUMO

BACKGROUND: Members of the plant-specific YABBY gene family are thought to play an important role in the development of leaf, flower, and fruit. The YABBY genes have been characterized and regarded as vital contributors to fruit development in Arabidopsis thaliana and tomato, in contrast to that in the important tropical economic fruit star fruit (Averrhoa carambola), even though its genome is available. METHODS: In the present study, a total of eight YABBY family genes (named from AcYABBY1 to AcYABBY8) were identified from the genome of star fruit, and their phylogenetic relationships, functional domains and motif compositions, physicochemical properties, chromosome locations, gene structures, protomer elements, collinear analysis, selective pressure, and expression profiles were further analyzed. RESULTS: Eight AcYABBY genes (AcYABBYs) were clustered into five clades and were distributed on five chromosomes, and all of them had undergone negative selection. Tandem and fragment duplications rather than WGD contributed to YABBY gene number in the star fruit. Expression profiles of AcYABBYs from different organs and developmental stages of fleshy fruit indicated that AcYABBY4 may play a specific role in regulating fruit size. These results emphasize the need for further studies on the functions of AcYABBYs in fruit development.

18.
Cannabis Cannabinoid Res ; 7(6): 882-895, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020417

RESUMO

Background: The bZIP gene family plays roles in biotic and abiotic stress, secondary metabolism, and other aspects in plants. They have been reported in Arabidopsis thaliana, Oryza sativa, Artemisia annua, and other plants, but their roles in Cannabis sativa have not been determined. Materials and Methods: In this study, we analyzed the genome-wide identification and expression profile of the bZIP gene family in C. sativa. Results: A total of 51 members of the bZIP gene family were identified based on the C. sativa genome and numbered in order from CsbZIP1 to CsbZIP51. Their phylogenetic relationships, cis-elements in promoter region, gene structures and motif compositions, physicochemical properties, chromosome locations, and expression profiles, were analyzed. The results showed that the 51 CsbZIPs were unevenly distributed on 10 chromosomes and could be clustered into 11 subfamilies. Furthermore, CsbZIPs located in the same subfamilies presented similar intron/exon organization and motif composition. The expression levels of CsbZIPs in various tissues (flowers, bracts, vegetative leaves, stems, and seeds) were determined using reverse transcription quantitative polymerase chain reaction. The expression levels of CsbZIPs were higher in flowers and bracts. The 51 CsbZIPs were explored, and their structure, evolution, and expression pattern in different tissues of C. sativa were characterized synthetically. The findings indicated that CsbZIPs are essential for the growth and development of C. sativa. Conclusions: These results provide a theoretical basis for subsequent research on hemp bZIP transcription factors and the cultivation of high-cannabidiol and low-tetrahydrocannabinol high-quality cannabis varieties.


Assuntos
Cannabis , Cannabis/genética , Filogenia
19.
PLoS One ; 17(8): e0272929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35969623

RESUMO

Because of species diversity and troubling conservation status in the wild, Orchidaceae has been one of the taxa with most concern in population ecological research for a long time. Although Orchidaceae is a group with high adaptability, they have become endangered for complex and various reasons such as the germination? difficulty and habitat loss, which makes it difficult to develop an accurate protection strategy. Phaius flavus is a terrestrial orchid which used to be widely distributed in central and southern Asia; however, large populations are difficult to find in the wild. Thus, the aim of this study was to provide a new perspective for conserving endangered P. flavus by investigating the mechanisms of its population decline; we established time-specific life and fertility tables, age pyramids, survival curves, and mortality curves for this plant and then conducted Leslie matrix model. We found that both of the populations from Wuhu Mount (WM) and Luohan Mount (LM) showed declining trends and exhibited pot-shaped age pyramids, low net reproductive rates, and negative intrinsic growth rates. The population from the Beikengding Mount (BM) showed a stable status with a bell-shaped age pyramid. However, it has a significant risk of decline because of the low net reproductive rate and intrinsic growth rate. This study use time-specific life and fertility tables, age pyramids, survival curves, and mortality curves, showed that the population decline of P. flavus could be attributed to 1) the shortage of seedlings caused by the low germination rate in the wild and 2) the loss of adult individuals caused by anthropogenic disturbances. To protect this species from extinction in these areas, we suggest that human activities in these habitats should be strictly forbidden and ex situ conservation of this plant in botanical gardens is also necessary.


Assuntos
Conservação dos Recursos Naturais , Orchidaceae , Animais , China , Ecossistema , Humanos , Plantas , Dinâmica Populacional
20.
PeerJ ; 10: e13106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310166

RESUMO

Background: Indigo-containing plant tissues change blue after a freezing treatment, which is accompanied by changes in indigo and its related compounds. Phaius flavus is one of the few monocot plants containing indigo. The change to blue after freezing was described to explore the biosynthesis of indigo in P. flavus. Methods: In this study, we surveyed the dynamic change of P. flavus flower metabolomics and transcriptomics. Results: The non-targeted metabolomics and targeted metabolomics results revealed a total of 98 different metabolites, the contents of indole, indican, indigo, and indirubin were significantly different after the change to blue from the freezing treatment. A transcriptome analysis screened ten different genes related to indigo upstream biosynthesis, including three anthranilate synthase genes, two phosphoribosyl-anthranilate isomerase genes, one indole-3-glycerolphosphate synthase gene, five tryptophan synthase genes. In addition, we further candidate 37 cytochrome P450 enzyme genes, one uridine diphosphate glucosyltransferase gene, and 24 ß-D-glucosidase genes were screened that may have participated in the downstream biosynthesis of indigo. This study explained the changes of indigo-related compounds at the metabolic level and gene expression level during the process of P. flavus under freezing and provided new insights for increasing the production of indigo-related compounds in P. flavus. In addition, transcriptome sequencing provides the basis for functional verification of the indigo biosynthesis key genes in P. flavus.


Assuntos
Índigo Carmim , Transcriptoma , Índigo Carmim/metabolismo , Transcriptoma/genética , Congelamento , Indóis/metabolismo , Flores/genética , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA