Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Nature ; 626(7997): 86-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297172

RESUMO

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

2.
Proc Natl Acad Sci U S A ; 120(40): e2302851120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748076

RESUMO

Sequentially managing the coverage and dimerization of *CO on the Cu catalysts is desirable for industrial-current-density CO2 reduction (CO2R) to C2+, which required the multiscale design of the surface atom/architecture. However, the oriented design is colossally difficult and even no longer valid due to unpredictable reconstruction. Here, we leverage the synchronous leaching of ligand molecules to manipulate the seeding-growth process during CO2R reconstruction and construct Cu arrays with favorable (100) facets. The gradient diffusion in the reconstructed array guarantees a higher *CO coverage, which can continuously supply the reactant to match its high-rate consumption for high partial current density for C2+. Sequentially, the lower energy barriers of *CO dimerization on the (100) facets contribute to the high selectivity of C2+. Profiting from this sequential *CO management, the reconstructed Cu array delivers an industrial-relevant FEC2+ of 86.1% and an FEC2H4 of 60.8% at 700 mA cm-2. Profoundly, the atomic-molecular scale delineation for the evolution of catalysts and reaction intermediates during CO2R can undoubtedly facilitate various electrocatalytic reactions.

3.
Nat Mater ; 23(5): 596-603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418925

RESUMO

Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.

4.
Chem Rev ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36728153

RESUMO

Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.

6.
Nano Lett ; 24(26): 8063-8070, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888216

RESUMO

The basal plane of transition metal dichalcogenides (TMDCs) is inert for the hydrogen evolution reaction (HER) due to its low-efficiency charge transfer kinetics. We propose a strategy of filling the van der Waals (vdW) layer with delocalized electrons to enable vertical penetration of electrons from the collector to the adsorption intermediate vertically. Guided by density functional theory, we achieve this concept by incorporating Cu atoms into the interlayers of tantalum disulfide (TaS2). The delocalized electrons of d-orbitals of the interlayered Cu can constitute the charge transfer pathways in the vertical direction, thus overcoming the hopping migration through vdW gaps. The vertical conductivity of TaS2 increased by 2 orders of magnitude. The TaS2 basal plane HER activity was extracted with an on-chip microcell. Modified by the delocalized electrons, the current density increased by 20 times, reaching an ultrahigh value of 800 mA cm-2 at -0.4 V without iR compensation.

7.
J Am Chem Soc ; 146(10): 6461-6465, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415580

RESUMO

A consensus view in catalysis is that a higher density of catalytically active sites indicates a higher reaction rate. Using molecular dynamics simulations capable of mimicking the electrochemical formation of gas molecules, we herein demonstrate that this view is problematic for electrocatalytic gas production. Our simulation results show that a higher density of catalytic active sites does not necessarily indicate a higher reaction rate─a high density of active sites could lead to a reduction in the rate of reaction. Further analysis reveals that this abnormal phenomenon is ascribed to aggregation of the produced gas molecules near catalytic sites. This work challenges the consensus view and lays the groundwork for better developing gas-producing reaction electrocatalysts.

8.
J Am Chem Soc ; 146(9): 6053-6060, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38404063

RESUMO

Two-dimensional (2D) materials with spin polarization have great potential for achieving next-generation spintronic applications. However, spin polarization of 2D materials is usually produced at a cryogenic temperature because of thermal fluctuations, which severely hinder their further applications. Here, we report room-temperature intrinsic magnetic-induced circularly polarized photoluminescence (PL) in 2D Er2O2S flakes. The geff factor of 2D Er2O2S stays at around -6.3 from the liquid He temperature limit to room temperature, which is independent of temperature. This anomalous phenomenon in Er2O2S is totally different from previous materials, which all have a decreasing Zeeman splitting with increasing temperature resulting from thermal fluctuations. The anomalous temperature-dependent magnetic-induced circularly polarized PL originates from the weak electron-phonon coupling in 2D Er2O2S, which has been proven by both the temperature-dependent Raman and theoretical calculations. This work sheds light on the understanding and manipulation of 2D materials for practical spintronic applications.

9.
J Am Chem Soc ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943576

RESUMO

Manipulating single electrons at the atomic scale is vital for mastering complex surface processes governed by the transfer of individual electrons. Polarons, composed of electrons stabilized by electron-phonon coupling, offer a pivotal medium for such manipulation. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) and density functional theory (DFT) calculations, we report the identification and manipulation of a new type of polaron, dubbed van der Waals (vdW) polaron, within mono- to trilayer ultrathin films composed of Sb2O3 molecules that are bonded via vdW attractions. The Sb2O3 films were grown on a graphene-covered SiC(0001) substrate via molecular beam epitaxy. Unlike prior molecular polarons, STM imaging observed polarons at the interstitial sites of the molecular film, presenting unique electronic states and localized band bending. DFT calculations revealed the lowest conduction band as an intermolecular bonding state, capable of ensnaring an extra electron through locally diminished intermolecular distances, thereby forming an intermolecular vdW polaron. We also demonstrated the ability to generate, move, and erase such vdW polarons using an STM tip. Our work uncovers a new type of polaron stabilized by coupling with intermolecular vibrations where vdW interactions dominate, paving the way for designing atomic-scale electron transfer processes and enabling precise tailoring of electron-related properties and functionalities.

10.
Small ; : e2400311, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804863

RESUMO

Polarization-sensitive photodetection grounded on low-symmetry 2D materials has immense potential in improving detection accuracy, realizing intelligent detection, and enabling multidimensional visual perception, which has promising application prospects in bio-identification, optical communications, near-infrared imaging, radar, military, and security. However, the majority of the reported polarized photodetection are limited by UV-vis response range and low anisotropic photoresponsivity factor, limiting the achievement of high-performance anisotropic photodetection. Herein, 2D t-InTe crystal is introduced into anisotropic systems and developed to realize broadband-response and high-anisotropy-ratio polarized photodetection. Stemming from its narrow band gap and intrinsic low-symmetry lattice characteristic, 2D t-InTe-based photodetector exhibits a UV-vis-NIR broadband photoresponse and significant photoresponsivity anisotropy behavior, with an exceptional in-plane anisotropic factor of 1.81@808 nm laser, surpassing the performance of most reported 2D counterparts. This work expounds the anisotropic structure-activity relationship of 2D t-InTe crystal, and identifies 2D t-InTe as a prospective candidate for high-performance polarization-sensitive optoelectronics, laying the foundation for future multifunctional device applications.

11.
Nat Mater ; 22(9): 1078-1084, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37537352

RESUMO

Two-dimensional (2D) semiconductors are promising channel materials for next-generation field-effect transistors (FETs). However, it remains challenging to integrate ultrathin and uniform high-κ dielectrics on 2D semiconductors to fabricate FETs with large gate capacitance. We report a versatile two-step approach to integrating high-quality dielectric film with sub-1 nm equivalent oxide thickness (EOT) on 2D semiconductors. Inorganic molecular crystal Sb2O3 is homogeneously deposited on 2D semiconductors as a buffer layer, which forms a high-quality oxide-to-semiconductor interface and offers a highly hydrophilic surface, enabling the integration of high-κ dielectrics via atomic layer deposition. Using this approach, we can fabricate monolayer molybdenum disulfide-based FETs with the thinnest EOT (0.67 nm). The transistors exhibit an on/off ratio of over 106 using an ultra-low operating voltage of 0.4 V, achieving unprecedently high gating efficiency. Our results may pave the way for the application of 2D materials in low-power ultrascaling electronics.

12.
Angew Chem Int Ed Engl ; 63(17): e202319462, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38286750

RESUMO

Developing highly active oxygen evolution reaction (OER) catalysts in acidic conditions is a pressing demand for proton-exchange membrane water electrolysis. Manipulating proton character at the electrified interface, as the crux of all proton-coupled electrochemical reactions, is highly desirable but elusive. Herein we present a promising protocol, which reconstructs a connected hydrogen-bond network between the catalyst-electrolyte interface by coupling hydrophilic units to boost acidic OER activity. Modelling on N-doped-carbon-layer clothed Mn-doped-Co3O4 (Mn-Co3O4@CN), we unravel that the hydrogen-bond interaction between CN units and H2O molecule not only drags the free water to enrich the surface of Mn-Co3O4 but also serves as a channel to promote the dehydrogenation process. Meanwhile, the modulated local charge of the Co sites from CN units/Mn dopant lowers the OER barrier. Therefore, Mn-Co3O4@CN surpasses RuO2 at high current density (100 mA cm-2 @ ~538 mV).

13.
J Am Chem Soc ; 145(23): 12682-12690, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37204114

RESUMO

Conjugated coordination polymers (CCPs), which possess long-range planar π-d conjugation, are fascinating for various applications because they inherit the merits of both metal-organic frameworks (MOFs) and conducting polymers. However, only one-dimensional (1D) and two-dimensional (2D) CCPs have been reported so far. The synthesis of three-dimensional (3D) CCPs is challenging and even seems theoretically infeasible because conjugation implies 1D or 2D structure. Besides, the redox activity of the conjugated ligands and the π-d conjugation makes the synthesis of CCPs very complicated, and hence, single crystals of CCPs are rarely achieved. Herein, we reported the first 3D CCP and its single crystals with atomically precise structures. The synthesis process involves complicated in situ dimerization, deprotonation of ligands, oxidation/reduction of both ligands and metal ions, and precise coordination between them. The crystals contain in-plane 1D π-d conjugated chains and close π-π interactions between the adjacent chains that are bridged by another column of stacked chains, thus forming 3D CCP with high conductivity (400 S m-1 at room temperature and 3100 S m-1 at 423 K) and potential applications as cathodes in sodium-ion batteries with high capacity, rate capability, and cyclability.

14.
J Am Chem Soc ; 145(30): 16828-16834, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467160

RESUMO

Two-dimensional (2D) van der Waals (vdW) materials, featuring relaxed phase-matching conditions and highly tunable optical nonlinearity, endow them with potential applications in nanoscale nonlinear optical (NLO) devices. Despite significant progress, fundamental questions in 2D NLO materials remain, such as how structural distortion affects second-order NLO properties, which call for advanced regulation and in situ diagnostic tools. Here, by applying pressure to continuously tune the displacement of Nb atoms in 2D vdW NbOI2, we effectively modulate the polarization and achieve a 3-fold boost of the second-harmonic generation (SHG) at 2.5 GPa. By introducing a Peierls distortion parameter, λ, we establish a quantitative relationship between λ and SHG intensity. Importantly, we further demonstrate that the SHG enhancement can be achieved under ambient conditions by anionic substitution to tune the distortion in NbO(I1-xBrx)2 (x = 0-1) compounds, where the chemical tailoring simulates the pressure effects on the structural optimization. Consequently, NbO(I0.60Br0.40)2 with λ = 0.17 exhibits a giant SHG of over 2 orders of magnitude higher than that in monolayer WSe2, reaching the record-high value among reported 2D vdW NLO materials. This work unambiguously demonstrates the correlation between Peierls distortion and SHG property and, more broadly, opens new paths for the development of advanced NLO materials by manipulating the structure distortions.

15.
Small ; 19(40): e2302230, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37287381

RESUMO

Sb2 O3 molecules offer unprecedented opportunities for the integration of a van der Waals (vdW) dielectric and a 2D vdW semiconductor. However, the working mechanisms underlying molecules-based vdW dielectrics remain unclear. Here, the working mechanisms of Sb2 O3 and two Sb2 O3 -like molecules (As2 O3 and Bi2 O3 ) as dielectrics are systematically investigated by combining first-principles calculations and gate leakage current theories. It is revealed that molecules-based vdW dielectrics have a considerable advantage over conventional dielectric materials: defects hardly affect their insulating properties. This shows that it is unnecessary to synthesize high-quality crystals in practical applications, which has been a long-standing challenge for conventional dielectric materials. Further analysis reveals that a large thermionic-emission current renders Sb2 O3 difficult to simultaneously satisfy the requirements of dielectric layers in p-MOS and n-MOS, which hinders its application for complementary metal-oxide-semiconductor (CMOS) devices. Remarkably, it is found that As2 O3 can serve as a dielectric for both p-MOS and n-MOS. This work not only lays a theoretical foundation for the application of molecules-based vdW dielectrics, but also offers an unprecedentedly competitive dielectric (i.e., As2 O3 ) for 2D vdW semiconductors-based CMOS devices, thus having profound implications for future semiconductor industry.

16.
Small ; 19(26): e2207934, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942685

RESUMO

Second harmonic generation (SHG) of 2D crystals has been of great interest due to its advantages of phase-matching and easy integration into nanophotonic devices. However, the polarization-dependence character of the SHG signal makes it highly troublesome but necessary to match the laser polarization orientation relative to the crystal, thus achieving the maximum polarized SHG intensity. Here, it is demonstrated a polarization-independent SHG, for the first time, in the van der Waals Nb3 SeI7 crystals with a breathing Kagome lattice. The Nb3 triangular clusters and Janus-structure of each Nb3 SeI7 layer are confirmed by the STEM. Nb3 SeI7 flake shows a strong SHG response due to its noncentrosymmetric crystal structure. More interestingly, the SHG signals of Nb3 SeI7 are independent of the polarization of the excitation light owing to the in-plane isotropic arrangement of nonlinear active units. This work provides the first layered nonlinear optical crystal with the polarization-independent SHG effect, providing new possibilities for nonlinear optics.

17.
Small ; 19(28): e2301116, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191326

RESUMO

Although challenges remain, synergistic adjusting various microstructures and photo/electrochemical parameters of graphitic carbon nitride (g-C3 N4 ) in photocatalytic hydrogen evolution reaction (HER) are the keys to alleviating the energy crisis and environmental pollution. In this work, a novel nitrogen-defective and sulfur-doped g-C3 N4 (S-g-C3 N4 -D) is designed elaborately. Subsequent physical and chemical characterization proved that the developed S-g-C3 N4 -D not only displays well-defined 2D lamellar morphology with a large porosity and a high specific surface area but also has an efficient light utilization and carriers-separation and transfer. Moreover, the calculated optimal Gibbs free energy of adsorbed hydrogen (ΔGH* ) for S-g-C3 N4 -D at the S active sites is close to zero (≈0.24 eV) on the basis of first-principle density functional theory (DFT). Accordingly, the developed S-g-C3 N4 -D catalyst shows a high H2 evolution rate of 5651.5 µmol g-1  h-1 . Both DFT calculations and experimental results reveal that a memorable defective g-C3 N4 /S-doped g-C3 N4 step-scheme heterojunction is constructed between S-doped domains and N-defective domains in the structural configuration of S-g-C3 N4 -D. This work exhibits a significant guidance for the design and fabrication of high-efficiency photocatalysts.

18.
Chem Soc Rev ; 51(8): 2972-2990, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35225307

RESUMO

2D carbides and nitrides of transition metals, also known as MXenes, are an emerging class of 2D nanomaterials that have shown excellent performances and broad application prospects in the fields of energy storage, catalysis, sensing, electromagnetic shielding, electronics and photonics, and life sciences. This unusual diversity of applications is due to their superior hydrophilicity and conductivity, high carrier concentration, ultra-high volumetric capacitance, rich surface chemistry, and large specific surface area. However, it is difficult to make MXenes with the desired surface functional groups that deliver high reactivity and high stability, because most MXenes are extracted from ceramics (MAX phase) by an etching process, where a large number of metal atoms are inevitably exposed on the surface, with other anions and cations embedded uncontrollably. The exposed metal atoms and implanted ions are thermodynamically unstable and readily react with trace oxygen or oxygen-containing groups to form the corresponding metal oxides or degrade chemically, resulting in a sharp decline in activity and loss of excellent physicochemical properties. The addition of certain synergistic additives during the intercalation and chemical modification of surface functional groups under non-hazardous conditions can result in stable and efficient MXene-based materials with exceptional optical, electrical, and magnetic properties. This review discusses several such methods, mainly additive-mediated intercalation and chemical modification of the surface functional groups of MXene-based materials, followed by their potential applications. Finally, perspectives are given to discuss the future challenges and promising opportunities of this exciting field.

19.
Chem Soc Rev ; 51(8): 3314, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35293418

RESUMO

Correction for 'Additive-mediated intercalation and surface modification of MXenes' by Jing Zou et al., Chem. Soc. Rev., 2022, DOI: 10.1039/d0cs01487g.

20.
Nano Lett ; 22(7): 3047-3053, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35315672

RESUMO

Metallic lithium is considered as the ultimate anode material for lithium-based batteries due to its highest energy density. However, as an anode, commercial Li metal foils are too thick, with a large amount of trouble to balance its exorbitant areal capacity with common cathodes in full cells. Here, a new chemical thinning strategy is proposed via a simple surface dissolving reaction between lithium and naphthalene, which enables scalable, continuous, and roll-to-roll preparation of ultrathin Li foil. A Li foil less than 15 µm with a clean surface can be successfully obtained within 20 min. The thinning rate and thickness of the lithium foil can be easily adjusted by changing the concentration, temperature, and operation mode. The produced Li-Naph solution after thinning can also be used as a multifunctional reagent of great value, and the Li ions in the final waste solution can be further extracted in the form of Li2CO3, showing superior lithium atom economy of our strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA