Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Anim Physiol Anim Nutr (Berl) ; 104(3): 838-846, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31821655

RESUMO

The Zi goose is native to North-east China and is noted for its high egg production. Alpha enolase (ENO1) is a glycolytic enzyme which functions as a plasminogen receptor in follicular granulosa cells (FGCs), with several studies showing that FGCs can support follicular development. By transfecting the ENO1 interfering plasmid (shRNA) into FGCs, ENO1 expression in these cells was downregulated, suggesting the successful knock-down of ENO1 in these cells. In this knock-down model, we detected 13 metabolites from FGCs using LC/MS. When compared with the non-coding shRNA (NC) group, the lower level metabolites were (R)-(+)-citronellic acid, altretamine, 3-hydroxycaproic acid, heptadecanoic acid, cholecalciferol vitamin D3, indole, benzoic acid, capric acid, caffeic acid, azelaic acid, 3,4-dihydroxyhydrocinnamic acid and cholic acid, while oleic acid was detected at high levels. To further examine the results of metabolomics, six key metabolites were verified by gas chromatography-mass spectrometry (GC-MS). We found that vitamin D3, indole, benzoic acid, capric acid and cholic acid were significantly downregulated in the shRNA group, while oleic acid was significantly upregulated. This observation was consistent with the metabolomics data. Through these studies, we found that decreased ENO1 levels altered certain metabolite levels in FGCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Gansos/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Células da Granulosa/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Redes e Vias Metabólicas , Fosfopiruvato Hidratase/genética , Análise de Componente Principal , Interferência de RNA , RNA Interferente Pequeno , Proteínas Supressoras de Tumor/genética
2.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(2): 184-188, 2020 Mar.
Artigo em Zh | MEDLINE | ID: mdl-32744017

RESUMO

Objective: To study the effects of α-enolase (ENO1) gene interference expression on proliferation, and cell cycle of follicular granulosa cells from Zi geese. Methods: F1 follicular granulosa cells were primary cultured (mixed culture), which were divided into four groups: ENO1 interference expression group (RNAi), unrelated sequence group (NC), culture group (Control), transfection reagent group (Lip). The apoptosis rate and cell cycle phase of the interference group and the control group were detected by the flow cytometry. Results: ENO1 gene interference expression slowed the proliferation of granulosa cells, increased the apoptosis, and increased the proportion of granulosa cells in G2/M phase. Conclusion: ENO1 gene interference expression could cause G2/M phase arrest in primary cultured goose follicular granulosa cells, induce cell apoptosis and inhibit cell proliferation.


Assuntos
Apoptose , Proliferação de Células , Gansos , Células da Granulosa/citologia , Fosfopiruvato Hidratase , Animais , Pontos de Checagem do Ciclo Celular , Feminino , Fosfopiruvato Hidratase/genética , Interferência de RNA
3.
Sci Rep ; 10(1): 521, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949263

RESUMO

Cold stimulation reduces the quality of animal products and increases animal mortality, causing huge losses to the livestock industry in cold regions. Long non-coding RNAs (lncRNAs) take part in many biological processes through transcriptional regulation, intracellular material transport, and chromosome remodeling. Although cold stress-related lncRNAs have been reported in plants, no research is available on the characteristic and functional analysis of lncRNAs after cold stress in rats. Here, we built a cold stress animal model firstly. Six SPF male Wistar rats were randomly divided to the acute cold stress group (4 °C, 12 h) and the normal group (24 °C, 12 h). lncRNA libraries were constructed by high-throughput sequencing (HTS) using rat livers. 2,120 new lncRNAs and 273 differentially expressed (DE) lncRNAs were identified in low temperature environments. The target genes of DElncRNA were predicted by cis and trans, and then functional and pathway analysis were performed to them. GO and KEGG analysis revealed that lncRNA targets were mainly participated in the regulation of nucleic acid binding, cold stimulation reaction, metabolic process, immune system processes, PI3K-Akt signaling pathway and pathways in cancer. Next, a interaction network between lncRNA and its targets was constructed. To further reveal the mechanism of cold stress, DElncRNA and DEmRNA were extracted to reconstruct a co-expression sub-network. We found the key lncRNA MSTRG.80946.2 in sub-network. Functional analysis of key lncRNA targets showed that targets were significantly enriched in fatty acid metabolism, the PI3K-Akt signaling pathway and pathways in cancer under cold stress. qRT-PCR confirmed the sequencing results. Finally, hub lncRNA MSTRG.80946.2 was characterized, and verified its relationship with related mRNAs by antisense oligonucleotide (ASO) interference and qRT-PCR. Results confirmed the accuracy of our analysis. To sum up, our work was the first to perform detailed characterization and functional analysis of cold stress-related lncRNAs in rats liver. lncRNAs played crucial roles in energy metabolism, growth and development, immunity and reproductive performance in cold stressed rats. The MSTRG.80946.2 was verified by network and experiments to be a key functional lncRNA under cold stress, regulating ACP1, TSPY1 and Tsn.


Assuntos
Resposta ao Choque Frio , Fígado/química , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Animais , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA