Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138642

RESUMO

An efficient carbon dioxide reduction reaction (CO2RR), which reduces CO2 to low-carbon fuels and high-value chemicals, is a promising approach for realizing the goal of carbon neutrality, for which effective but low-cost catalysts are critically important. Recently, many inorganic perovskite-based materials with tunable chemical compositions have been applied in the electrochemical CO2RR, which exhibited advanced catalytic performance. Therefore, a timely review of this progress, which has not been reported to date, is imperative. Herein, the physicochemical characteristics, fabrication methods and applications of inorganic perovskites and their derivatives in electrochemical CO2RR are systematically reviewed, with emphasis on the structural evolution and product selectivity of these electrocatalysts. What is more, the current challenges and future directions of perovskite-based materials regarding efficient CO2RR are proposed, to shed light on the further development of this prospective research area.

2.
ChemSusChem ; : e202401261, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010254

RESUMO

The high-entropy materials (HEMs), composed of five or more elements, have attracted significant attention in electrocatalysis due to their unique physicochemical properties arising from the existence of multi-elements compositions. Beyond chemical composition, microstructure significantly influences the catalytic performance and even the catalytic mechanism towards energy conversion reactions. Given the rapid proliferation of research on HEMs and the critical roles of microstructure in their catalytic performance, a timely and comprehensive review of recent advancements is imperative. This review meticulously examines the synthesis methods and physicochemical characteristics of HEMs with distinct one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) morphologies. By highlighting representative examples from the past five years, we elucidate the unique properties of HEMs with 1D, 2D and 3D microstructures, detailing their intricate influence on electrocatalytic performance, aiming to spur further advancements in this promising research area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA